A deep learning and novelty detection framework for rapid phenotyping in high-content screening

CellCognition Explorer provides a generic novelty detection and deep learning framework for high content screening, enabling discovery of rare cell phenotypes without user training.

[1]  Ming Yang,et al.  DeepFace: Closing the Gap to Human-Level Performance in Face Verification , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Joachim M Buhmann,et al.  Unsupervised modeling of cell morphology dynamics for time-lapse microscopy , 2012, Nature Methods.

[3]  Robert F. Murphy,et al.  A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells , 2001, Bioinform..

[4]  Adrian J. Verster,et al.  High-Content Screening for Quantitative Cell Biology. , 2016, Trends in cell biology.

[5]  Lucas Pelkmans,et al.  A Hierarchical Map of Regulatory Genetic Interactions in Membrane Trafficking , 2014, Cell.

[6]  Polina Golland,et al.  Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning , 2009, Proceedings of the National Academy of Sciences.

[7]  R. Durbin,et al.  Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes , 2010, Nature.

[8]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[9]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[10]  Bernd Fischer,et al.  CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging , 2010, Nature Methods.

[11]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[12]  Pauli Rämö,et al.  CellClassifier: supervised learning of cellular phenotypes , 2009, Bioinform..

[13]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[14]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .

[15]  Brendan J. Frey,et al.  Classifying and segmenting microscopy images with deep multiple instance learning , 2015, Bioinform..

[16]  Satwik Rajaram,et al.  PhenoRipper: software for rapidly profiling microscopy images , 2012, Nature Methods.

[17]  Stephen T. C. Wong,et al.  A Screen for Morphological Complexity Identifies Regulators of Switch-like Transitions between Discrete Cell Shapes , 2013, Nature Cell Biology.

[18]  Leopold Parts,et al.  Accurate classification of protein subcellular localization from high throughput microscopy images using deep learning , 2016 .

[19]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[20]  Robert F. Murphy,et al.  Robust Numerical Features for Description and Classification of Subcellular Location Patterns in Fluorescence Microscope Images , 2003, J. VLSI Signal Process..

[21]  Razvan Pascanu,et al.  Advances in optimizing recurrent networks , 2012, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[22]  Jan Ellenberg,et al.  Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells , 2001, The Journal of cell biology.

[23]  Anthony A. Hyman,et al.  Ki-67 acts as a biological surfactant to disperse mitotic chromosomes , 2016, Nature.

[24]  Otto Hudecz,et al.  Live-cell imaging RNAi screen identifies PP2A–B55α and importin-β1 as key mitotic exit regulators in human cells , 2010, Nature Cell Biology.

[25]  Anne E Carpenter,et al.  CellProfiler: image analysis software for identifying and quantifying cell phenotypes , 2006, Genome Biology.

[26]  Douglas M. Hawkins Identification of Outliers , 1980, Monographs on Applied Probability and Statistics.

[27]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[28]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[29]  V. Vapnik Pattern recognition using generalized portrait method , 1963 .

[30]  Yolanda T. Chong,et al.  Automated analysis of high‐content microscopy data with deep learning , 2017, Molecular systems biology.

[31]  Tara N. Sainath,et al.  Deep convolutional neural networks for LVCSR , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[32]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[33]  David A. Clifton,et al.  A review of novelty detection , 2014, Signal Process..

[34]  Christoph Sommer,et al.  Machine learning in cell biology – teaching computers to recognize phenotypes , 2013, Journal of Cell Science.

[35]  D. Gerlich,et al.  Automated live microscopy to study mitotic gene function in fluorescent reporter cell lines. , 2009, Methods in molecular biology.

[36]  Beate Sick,et al.  Single-Cell Phenotype Classification Using Deep Convolutional Neural Networks , 2016, Journal of biomolecular screening.

[37]  H. Erfle,et al.  High-throughput RNAi screening by time-lapse imaging of live human cells , 2006, Nature Methods.

[38]  Holger Fröhlich,et al.  Unsupervised automated high throughput phenotyping of RNAi time-lapse movies , 2013, BMC Bioinformatics.

[39]  Xiaobo Zhou,et al.  Using iterative cluster merging with improved gap statistics to perform online phenotype discovery in the context of high-throughput RNAi screens , 2008, BMC Bioinformatics.

[40]  Bernd Fischer,et al.  CellH5: a format for data exchange in high-content screening , 2013, Bioinform..

[41]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[42]  C. Bakal,et al.  Quantitative Morphological Signatures Define Local Signaling Networks Regulating Cell Morphology , 2007, Science.

[43]  Péter Horváth,et al.  Enhanced CellClassifier: a multi-class classification tool for microscopy images , 2010, BMC Bioinformatics.

[44]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[45]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[46]  R. Wollman,et al.  Genes Required for Mitotic Spindle Assembly in Drosophila S2 Cells , 2007, Science.

[47]  Lior Shamir,et al.  CHLOE: A Software Tool for Automatic Novelty Detection in Microscopy Image Datasets , 2014 .

[48]  C. Conrad,et al.  Automated microscopy for high-content RNAi screening , 2010, The Journal of cell biology.

[49]  M. Boutros,et al.  Microscopy-Based High-Content Screening , 2015, Cell.