Ho:YAG laser lithotripsy in non-contact mode: optimization of fiber to stone working distance to improve ablation efficiency

[1]  O. Traxer,et al.  Contact or Noncontact Laser Lithotripsy? (From: Tracey J, Gagin G, Morhardt D, et al. J Endourol 2018;32:290-295). , 2018, Journal of endourology.

[2]  Luke A. Hardy,et al.  Analysis of thulium fiber laser induced bubble dynamics for ablation of kidney stones , 2017, Journal of biophotonics.

[3]  O. Traxer,et al.  Optimal Settings for the Noncontact Holmium:YAG Stone Fragmentation Popcorn Technique , 2017, The Journal of urology.

[4]  F. Coste,et al.  Impact of laser fiber tip cleavage on power output for ureteroscopy and stone treatment , 2017, World Journal of Urology.

[5]  L. Berthe,et al.  Laser Fiber and Flexible Ureterorenoscopy: The Safety Distance Concept. , 2016, Journal of endourology.

[6]  J. Rassweiler,et al.  Re: Update on Lasers in Urology. Current Assessment on Holmium:yttrium-aluminum-garnet (Ho:YAG) Laser Lithotripter Settings and Laser Fibers. , 2016, European urology.

[7]  Olivier Traxer,et al.  Update on lasers in urology 2014: current assessment on holmium:yttrium–aluminum–garnet (Ho:YAG) laser lithotripter settings and laser fibers , 2015, World Journal of Urology.

[8]  Olivier Traxer,et al.  Are we all doing it wrong? Influence of stripping and cleaving methods of laser fibers on laser lithotripsy performance. , 2015, The Journal of urology.

[9]  Ronald Sroka,et al.  Impact of pulse duration on Ho:YAG laser lithotripsy: treatment aspects on the single-pulse level , 2015, World Journal of Urology.

[10]  Olivier Traxer,et al.  In vitro fragmentation efficiency of holmium: yttrium‐aluminum‐garnet (YAG) laser lithotripsy – a comprehensive study encompassing different frequencies, pulse energies, total power levels and laser fibre diameters , 2014, BJU international.

[11]  F. Kim,et al.  Determinants of holmium:yttrium-aluminum-garnet laser time and energy during ureteroscopic laser lithotripsy. , 2014, Urology.

[12]  O. Traxer,et al.  The truth about laser fiber diameters. , 2013, Urology.

[13]  Bingqing Wang,et al.  Optimal power settings for Holmium:YAG lithotripsy. , 2012, The Journal of urology.

[14]  Thorsten Bach,et al.  Effect of pulse energy, frequency and length on holmium:yttrium-aluminum-garnet laser fragmentation efficiency in non-floating artificial urinary calculi. , 2010, Journal of endourology.

[15]  Zhengjia Li,et al.  Cavitation effect of holmium laser pulse applied to ablation of hard tissue underwater. , 2010, Journal of biomedical optics.

[16]  J. Lenoir,et al.  Effectiveness of high-frequency holmium:YAG laser stone fragmentation: the "popcorn effect". , 2008, Journal of endourology.

[17]  Ngoc-Bich Le,et al.  Effect of pulse width on object movement in vitro using holmium:YAG laser. , 2007, Journal of endourology.

[18]  A J Welch,et al.  Holmium: YAG lithotripsy: photothermal mechanism. , 1999, Journal of endourology.

[19]  J. Teichman,et al.  Holmium:YAG lithotripsy efficiency varies with energy density. , 1998, The Journal of urology.

[20]  Manoj Monga,et al.  Durability of reusable holmium:YAG laser fibers: a multicenter study. , 2011, The Journal of urology.

[21]  Olivier Traxer,et al.  Impact on active scope deflection and irrigation flow of all endoscopic working tools during flexible ureteroscopy. , 2004, European urology.

[22]  A. Welch,et al.  Holmium:YAG laser lithotripsy: A dominant photothermal ablative mechanism with chemical decomposition of urinary calculi , 1999, Lasers in Surgery and Medicine.