Mid-infrared frequency combs

[1]  T. Hänsch,et al.  Adaptive real-time dual-comb spectroscopy , 2012, Nature Communications.

[2]  F. Keilmann,et al.  Mid-infrared Frequency Comb Spanning an Octave Based on an Er Fiber Laser and Difference-Frequency Generation , 2012, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[3]  A. Foltynowicz,et al.  Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide , 2012, 1202.1216.

[4]  T. Hänsch,et al.  Adaptive dual-comb spectroscopy in the green region. , 2012, Optics letters.

[5]  T. Hänsch,et al.  Raman-induced Kerr-effect dual-comb spectroscopy. , 2012, Optics letters.

[6]  Ingmar Hartl,et al.  Widely-tunable mid-infrared frequency comb source based on difference frequency generation. , 2012, Optics letters.

[7]  T. Ideguchi,et al.  Femtosecond stimulated Raman dual-comb spectroscopy , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[8]  Ingmar Hartl,et al.  Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser. , 2012, Optics express.

[9]  K. Eikema,et al.  Widely-tunable mid-IR frequency comb source based on difference frequency generation , 2012, 1203.2441.

[10]  J. Biegert,et al.  High-average-power, carrier-envelope phase-stable, few-cycle pulses at 2.1 μm from a collinear BiB3O6 optical parametric amplifier. , 2012, Optics letters.

[11]  J W Nicholson,et al.  Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz. , 2012, Optics letters.

[12]  S. Diddams,et al.  High-power, hybrid Er:fiber/Tm:fiber frequency comb source in the 2 μm wavelength region. , 2012, Optics letters.

[13]  Evgeni Sorokin,et al.  Kerr-Lens Mode-locked Cr:ZnS Laser , 2012 .

[14]  P. Moulton,et al.  Progress in ultrafast Cr:ZnSe lasers , 2012 .

[15]  Tom Gardiner,et al.  Asynchronous midinfrared ultrafast optical parametric oscillator for dual-comb spectroscopy. , 2012, Optics letters.

[16]  M. Gorodetsky,et al.  Universal dynamics of Kerr-frequency comb formation in microresonators , 2011, 2012 Conference on Lasers and Electro-Optics (CLEO).

[17]  V. Kozlovsky,et al.  Laser radiation tunable within the range of 4.35–5.45 μm in a ZnTe crystal doped with Fe2+ ions , 2011 .

[18]  H. Inaba,et al.  Absolute frequency list of the ν3-band transitions of methane at a relative uncertainty level of 10(-11). , 2011, Optics express.

[19]  Mikko Merimaa,et al.  Frequency-comb-referenced molecular spectroscopy in the mid-infrared region. , 2011, Optics letters.

[20]  R. Baets,et al.  Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides. , 2011, Optics express.

[21]  I. Coddington,et al.  Spectroscopy of the methane {nu}{sub 3} band with an accurate midinfrared coherent dual-comb spectrometer , 2011, 1110.1401.

[22]  Carsten Langrock,et al.  Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system. , 2011, Optics letters.

[23]  R. Holzwarth,et al.  Mid-Infrared Optical Frequency Combs based on Crystalline Microresonators , 2011, 1109.2716.

[24]  Valentin Gapontsev,et al.  Progress in mid-IR Cr 2+ and Fe 2+ doped II-VI materials and lasers [Invited] , 2011 .

[25]  P. Laporta,et al.  High-precision molecular interrogation by direct referencing of a quantum-cascade-laser to a near-infrared frequency comb. , 2011, Optics express.

[26]  M. Gorodetsky,et al.  Octave spanning tunable frequency comb from a microresonator. , 2011, Physical review letters.

[27]  Michal Lipson,et al.  Octave-spanning frequency comb generation in a silicon nitride chip. , 2011, Optics letters.

[28]  Gianluca Galzerano,et al.  1.6-W self-referenced frequency comb at 2.06 μm using a Ho:YLF multipass amplifier. , 2011, Optics letters.

[29]  P. Schunemann,et al.  Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator. , 2011, Optics letters.

[30]  Qing Wang,et al.  Mode-Locked Tm–Ho-Codoped Fiber Laser at 2.06 $\mu$ m , 2011, IEEE Photonics Technology Letters.

[31]  G. Qin,et al.  Wideband supercontinuum generation in tapered tellurite microstructured fibers , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[32]  T. Kippenberg,et al.  Mid-infrared frequency combs based on microresonators , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[33]  Konstantin L. Vodopyanov,et al.  Broadband degenerate OPO for mid-infrared frequency comb generation. , 2011, Optics express.

[34]  Jonathan T. Goldstein,et al.  Progress in mid-IR Cr2+ and Fe2+ doped II-VI Materials and Lasers , 2011 .

[35]  A. I. Landman,et al.  Pulsed Fe2+:ZnS laser continuously tunable in the wavelength range of 3.49 — 4.65 μm , 2011 .

[36]  F. Keilmann,et al.  Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy , 2011 .

[37]  M. Triki,et al.  Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy , 2010, 1012.4181.

[38]  Esther Baumann,et al.  Fast high-resolution spectroscopy of dynamic continuous-wave laser sources , 2010 .

[39]  Scott A. Diddams,et al.  The evolving optical frequency comb [Invited] , 2010 .

[40]  Jun Ye,et al.  Mid-infrared Fourier transform spectroscopy with a broadband frequency comb. , 2010, Optics express.

[41]  Dietmar Kracht,et al.  Pulse characteristics of a passively mode-locked thulium fiber laser with positive and negative cavity dispersion. , 2010, Optics express.

[42]  P. Figueira Radial Velocities with CRIRES , 2010 .

[43]  P. Schwerdtfeger,et al.  Progress toward the first observation of parity violation in chiral molecules by high-resolution laser spectroscopy. , 2010, Chirality.

[44]  Jun Ye,et al.  Mid-Infrared Frequency Comb Fourier Transform Spectrometer , 2010, 1007.0716.

[45]  Jun Ye,et al.  Cavity-enhanced direct frequency comb spectroscopy: technology and applications. , 2010, Annual review of analytical chemistry.

[46]  B. Bernhardt,et al.  Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers , 2010 .

[47]  European Southern Observatory,et al.  Radial velocities with CRIRES - Pushing precision down to 5-10 m/s , 2009, 0912.2643.

[48]  S. Borri,et al.  Saturated-absorption cavity ring-down spectroscopy. , 2009, Physical review letters.

[49]  Thomas Udem,et al.  Cavity-enhanced dual-comb spectroscopy , 2009, 0908.1928.

[50]  E. Ippen,et al.  Optical arbitrary waveform generation , 2007, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[51]  Scott A. Diddams,et al.  The evolving optical frequency comb , 2010 .

[52]  Adnan Kurt,et al.  Kerr-lens mode-locked femtosecond Cr(2+):ZnSe laser at 2420 nm. , 2009, Optics letters.

[53]  Federico Capasso,et al.  Mode-locked pulses from mid-infrared quantum cascade lasers. , 2009, Optics express.

[54]  R. Holzwarth,et al.  Femtosecond optical frequency combs , 2009 .

[55]  A. Kireev,et al.  Femtosecond fiber laser based methane optical clock , 2009 .

[56]  Federico Capasso,et al.  Stable mode-locked pulses from mid-infrared semiconductor lasers , 2009, 0903.4385.

[57]  S. Wong,et al.  Self-phase-locked divide-by-2 optical parametric oscillator as a broadband frequency comb source , 2009, LASE.

[58]  Jun Ye,et al.  Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm. , 2009, Optics letters.

[59]  Julien Mandon,et al.  Fourier transform spectroscopy with a laser frequency comb , 2009 .

[60]  K. Kieu,et al.  Soliton Thulium-Doped Fiber Laser With Carbon Nanotube Saturable Absorber , 2009, IEEE Photonics Technology Letters.

[61]  Jun Ye,et al.  CAVITY-ENHANCED OPTICAL FREQUENCY COMB SPECTROSCOPY , 2009 .

[62]  Alfred Leitenstorfer,et al.  Field-resolved detection of phase-locked infrared transients from a compact Er:fiber system tunable between 55 and 107 THz , 2008 .

[63]  D. W. van der Weide,et al.  Vector frequency-comb Fourier-transform spectroscopy for characterizing metamaterials , 2008 .

[64]  Roberta Ramponi,et al.  Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator. , 2008 .

[65]  T. Hänsch,et al.  Laser Frequency Combs for Astronomical Observations , 2008, Science.

[66]  Evgueni M. Dianov,et al.  Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber , 2008 .

[67]  M Cronin-Golomb,et al.  Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. , 2008, Optics express.

[68]  A. Szentgyorgyi,et al.  A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1 , 2008, Nature.

[69]  A. Matsko,et al.  Tunable optical frequency comb with a crystalline whispering gallery mode resonator. , 2008, Physical review letters.

[70]  Benjamin J Eggleton,et al.  Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. , 2008, Optics letters.

[71]  Jun Ye,et al.  Cavity-enhanced direct frequency comb spectroscopy , 2008, 0803.4509.

[72]  A Amy-Klein,et al.  Stability of the proton-to-electron mass ratio. , 2008, Physical review letters.

[73]  Derryck T. Reid,et al.  Frequency comb generation and carrier-envelope phase control in femtosecond optical parametric oscillators , 2008 .

[74]  I. Coddington,et al.  Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. , 2007, Physical review letters.

[75]  Anne Amy-Klein,et al.  HCOOH high-resolution spectroscopy in the 9.18 μm region , 2007, 0707.2218.

[76]  N. Picqué,et al.  Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 mum region with a Cr(2+):ZnSe femtosecond laser. , 2007, Optics express.

[77]  T. Kippenberg,et al.  Optical frequency comb generation from a monolithic microresonator , 2007, Nature.

[78]  D T Reid,et al.  Composite frequency comb spanning 0.4-2.4 microm from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator. , 2007, Optics letters.

[79]  J. Biegert,et al.  Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 microm from a compact fiber source. , 2007, Optics letters.

[80]  S. Borri,et al.  Frequency-comb-referenced quantum-cascade laser at 4.4 microm. , 2007, Optics letters.

[81]  Scott A. Diddams,et al.  Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb , 2007, Nature.

[82]  T. Hänsch Nobel Lecture: Passion for precision* , 2006 .

[83]  John L. Hall,et al.  Nobel Lecture: Defining and measuring optical frequencies , 2006 .

[84]  F. Keilmann,et al.  Spectroscopic near-field microscopy using frequency combs in the mid-infrared. , 2006, Optics express.

[85]  P. Maddaloni,et al.  Mid-infrared fibre-based optical comb , 2006 .

[86]  V. A. Akimov,et al.  3.77-5.05-μm tunable solid-state lasers based on Fe/sup 2+/-doped ZnSe crystals operating at low and room temperatures , 2006, IEEE Journal of Quantum Electronics.

[87]  Jun Ye,et al.  References and Notes Supporting Online Material Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection , 2022 .

[88]  J. Ye,et al.  Femtosecond Optical Frequency Comb: Principle, Operation and Applications , 2010 .

[89]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[90]  Markus Brehm,et al.  Frequency-comb infrared spectrometer for rapid, remote chemical sensing. , 2005, Optics express.

[91]  E. Sorokin,et al.  Ultrabroadband infrared solid-state lasers , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[92]  Christian Chardonnet,et al.  Absolute frequency measurement of a SF6 two-photon line by use of a femtosecond optical comb and sum-frequency generation. , 2005, Optics letters.

[93]  A. Luiten,et al.  Long-distance frequency dissemination with a resolution of 10(-17). , 2005, Physical review letters.

[94]  Jun Ye,et al.  Demonstration of a HeNe/CH4-based optical molecular clock. , 2005, Optics letters.

[95]  A. Matsko,et al.  Low threshold optical oscillations in a whispering gallery mode CaF(2) resonator. , 2004, Physical review letters.

[96]  K. Vahala,et al.  Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. , 2004, Physical review letters.

[97]  Fritz Keilmann,et al.  Time-domain mid-infrared frequency-comb spectrometer. , 2004, Optics letters.

[98]  H. Hansma,et al.  United Time-Frequency Spectroscopy for Dynamics and Global Structure , 2004 .

[99]  Jun Ye,et al.  Colloquium: Femtosecond optical frequency combs , 2003 .

[100]  David J. Jones,et al.  Flexible and rapidly configurable femtosecond pulse generation in the mid-IR. , 2003, Optics letters.

[101]  Irina T. Sorokina,et al.  Crystalline Mid-Infrared Lasers , 2003 .

[102]  Markus W. Sigrist,et al.  Mid-IR Difference Frequency Generation , 2003 .

[103]  Jérôme Faist,et al.  High Performance Quantum Cascade Lasers and Their Applications , 2003 .

[104]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[105]  Ralph H. Page,et al.  Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers , 2002 .

[106]  M. Ohtsu,et al.  Ultrahigh Scanning Speed Optical Coherence Tomography Using Optical Frequency Comb Generators , 2001, CLEO 2001.

[107]  Federico Capasso,et al.  Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities. , 2000, Science.

[108]  Kenneth C. Kulander,et al.  High Harmonic Generation at Long Wavelengths , 1999 .

[109]  Ralph H. Page,et al.  Cr/sup 2+/-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers , 1997 .

[110]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[111]  Hermann A. Haus,et al.  Broadly tunable sub‐500 fs pulses from an additive‐pulse mode‐locked thulium‐doped fiber ring laser , 1995 .

[112]  Schafer,et al.  High-order harmonic generation from atoms and ions in the high intensity regime. , 1992, Physical review letters.

[113]  O. Faix,et al.  Fourier Transform Infrared Spectroscopy , 1992 .

[114]  G. Duxbury Fourier transform infrared spectroscopy , 1978, Nature.

[115]  Theodor W. Hänsch,et al.  High-Resolution Two-Photon Spectroscopy with Picosecond Light Pulses , 1978 .

[116]  J. Eckstein,et al.  Coherent Two-Photon Excitation by Multiple Light Pulses , 1977 .