Selected LIBS Applications

[1]  D. Cremers,et al.  Use of the vacuum ultraviolet spectral region for laser-induced breakdown spectroscopy-based Martian geology and exploration , 2005 .

[2]  Christopher P. McKay,et al.  Laser Ablation Molecular Isotopic Spectrometry , 2011 .

[3]  S. J. Rehse,et al.  The Effect of Bacterial Environmental and Metabolic Stresses on a Laser-Induced Breakdown Spectroscopy (LIBS) Based Identification of Escherichia Coli and Streptococcus Viridans , 2011, Applied spectroscopy.

[4]  David S. Moore,et al.  Recent Advances in Trace Explosives Detection Instrumentation , 2007 .

[5]  D. Veirs,et al.  PU-239/PU-240 ISOTOPE RATIOS DETERMINED USING HIGH RESOLUTION EMISSION SPECTROSCOPY IN A LASER INDUCED PLASMA , 2000 .

[6]  F. J. Fortes,et al.  Chemical analysis of archeological materials in submarine environments using laser-induced breakdown spectroscopy. On-site trials in the Mediterranean Sea , 2012 .

[7]  N. Yoshikawa,et al.  Detection of Carbon Content in a High-Temperature and High-Pressure Environment Using Laser-Induced Breakdown Spectroscopy , 2002 .

[8]  D. Cremers,et al.  Monitoring Uranium, Hydrogen, and Lithium and Their Isotopes Using a Compact Laser-Induced Breakdown Spectroscopy (LIBS) Probe and High-Resolution Spectrometer , 2012, Applied spectroscopy.

[9]  S. J. Rehse,et al.  Identification and discrimination of Pseudomonas aeruginosa bacteria grown in blood and bile by laser-induced breakdown spectroscopy , 2007 .

[10]  S. Penin,et al.  Uranium detection in aerosol particles on emission spectra of a laser plasma , 1996 .

[11]  S J Rehse,et al.  Laser-induced breakdown spectroscopy (LIBS): an overview of recent progress and future potential for biomedical applications , 2012, Journal of medical engineering & technology.

[12]  S. J. Rehse,et al.  Towards the clinical application of laser-induced breakdown spectroscopy for rapid pathogen diagnosis: the effect of mixed cultures and sample dilution on bacterial identification , 2010 .

[13]  W. Neu,et al.  Double-pulse technique for optical emission spectroscopy of ablation plasmas of samples in liquids. , 1993, Optics letters.

[14]  Vivek Kumar Singh,et al.  Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review , 2011, Lasers in Medical Science.

[15]  D. Cremers,et al.  Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission , 2004 .

[16]  Trevor G. Graff,et al.  The influence of multivariate analysis methods and target grain size on the accuracy of remote quantitative chemical analysis of rocks using laser induced breakdown spectroscopy , 2011 .

[17]  Klaus Keil,et al.  The Viking X ray fluorescence experiment - Analytical methods and early results , 1977 .

[18]  J. J. Laserna,et al.  Remote laser-induced plasma spectrometry for elemental analysis of samples of environmental interest , 2004 .

[19]  R. Wiens,et al.  Analysis of Water Ice and Water Ice/Soil Mixtures Using Laser-Induced Breakdown Spectroscopy: Application to Mars Polar Exploration , 2004, Applied spectroscopy.

[20]  S. J. Rehse,et al.  Pathogenic Escherichia coli strain discrimination using laser-induced breakdown spectroscopy , 2007 .

[21]  Christopher P. McKay,et al.  Laser Ablation Molecular Isotopic Spectrometry: Strontium and its isotopes , 2011 .

[22]  D. Cremers,et al.  Spectrochemical Analysis of Liquids Using the Laser Spark , 1984 .

[23]  Arnab Sarkar,et al.  Determination of thorium and uranium in solution by laser-induced breakdown spectrometry. , 2008, Applied optics.

[24]  David A. Cremers,et al.  Characterization of Laser-Induced Breakdown Spectroscopy (LIBS) for Application to Space Exploration , 2000 .

[25]  David A. Cremers,et al.  Laser-induced breakdown spectroscopy for remote elemental analysis of planetary surfaces , 1992 .

[26]  S. R. Goode,et al.  Analysis of Aqueous Solutions by Laser-Induced Breakdown Spectroscopy of Ion Exchange Membranes , 2002 .

[27]  P. Mauchien,et al.  Determination of Impurities in Uranium and Plutonium Dioxides by Laser-Induced Breakdown Spectroscopy , 1999 .

[28]  L. J. Radziemski,et al.  Laser-induced breakdown spectroscopy: Time-integrated applications , 1981 .

[29]  R. Wiens,et al.  Laser-Induced Breakdown Spectroscopy for Mars surface analysis: capabilities at stand-off distances and detection of chlorine and sulfur elements , 2004 .

[30]  H. J. Moore,et al.  Overview of the Mars Pathfinder mission and assessment of landing site predictions. , 1997, Science.

[31]  N. Bridges,et al.  The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests , 2012 .

[32]  I. Escudero-Sanz,et al.  Optical design of a combined Raman–laser-induced-breakdown-spectroscopy instrument for the European Space Agency ExoMars Mission , 2008 .

[33]  Raymond E. Arvidson,et al.  Combined remote mineralogical and elemental identification from rovers: Field and laboratory tests using reflectance and laser‐induced breakdown spectroscopy , 2002 .

[34]  I. Rauschenbach,et al.  Miniaturized Laser-Induced Breakdown Spectroscopy for the in-situ analysis of the Martian surface: Calibration and quantification , 2010 .

[35]  S. Clegg,et al.  Calibrating the ChemCam laser-induced breakdown spectroscopy instrument for carbonate minerals on Mars , 2010 .

[36]  Philippe Adam,et al.  Detection of bacteria by time-resolved laser-induced breakdown spectroscopy. , 2003, Applied optics.

[37]  S. Angel,et al.  Oceanic applications of laser induced breakdown spectroscopy: laboratory validation , 2005, Proceedings of OCEANS 2005 MTS/IEEE.

[38]  J. Mullen,et al.  Time-resolved emission from laser-ablated uranium , 1991 .

[39]  T. Economou Chemical analyses of martian soil and rocks obtained by the Pathfinder Alpha Proton X-ray spectrometer , 2001 .

[40]  M. Saccoccio,et al.  The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description , 2012 .

[41]  Roberta Fantoni,et al.  LIBS application for analyses of martian crust analogues: search for the optimal experimental parameters in air and CO2 atmosphere , 2004 .

[42]  S. J. Rehse,et al.  Pathogen identification with laser-induced breakdown spectroscopy: the effect of bacterial and biofluid specimen contamination. , 2012, Applied optics.

[43]  R. L. Vander Wal,et al.  Trace Metal Detection by Laser-Induced Breakdown Spectroscopy , 1999 .

[44]  Heinz-Wilhelm Hübers,et al.  Miniaturized laser-induced plasma spectrometry for planetary in situ analysis – The case for Jupiter’s moon Europa , 2011 .

[45]  M. B. Denton,et al.  Lead Isotope Ratio Determination for the Forensic Analysis of Military Small Arms Projectiles , 2003 .

[46]  Kevin L. McNesby,et al.  Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants , 2005 .

[47]  Jennifer L. Gottfried,et al.  Discrimination of biological and chemical threat simulants in residue mixtures on multiple substrates , 2011, Analytical and bioanalytical chemistry.

[48]  Frank C De Lucia,et al.  Laser-induced breakdown spectroscopy for the classification of unknown powders. , 2008, Applied optics.

[49]  D. Cremers,et al.  The Use of Laser-Induced Breakdown Spectroscopy for Distinguishing between Bacterial Pathogen Species and Strains , 2010, Applied spectroscopy.

[50]  R. Wiens,et al.  Laser-induced breakdown spectroscopy for space exploration applications: Influence of the ambient pressure on the calibration curves prepared from soil and clay samples , 2005 .

[51]  S. Maurice,et al.  Comparative study of different methodologies for quantitative rock analysis by Laser-Induced Breakdown Spectroscopy in a simulated Martian atmosphere , 2006 .

[52]  Roger C. Wiens,et al.  Laser induced breakdown spectroscopy library for the Martian environment , 2011 .

[53]  D. Cremers,et al.  Use of laser-induced breakdown spectroscopy for the differentiation of pathogens and viruses on substrates. , 2012, Applied optics.

[54]  M. W. Carter Measurement of Uranium and its Decay Products on Contaminated Surfaces , 1983 .

[55]  A. Miziolek,et al.  Standoff Detection of Chemical and Biological Threats Using Laser-Induced Breakdown Spectroscopy , 2008, Applied spectroscopy.

[56]  S. Maurice,et al.  Mars Analysis by Laser-Induced Breakdown Spectroscopy (MALIS): Influence of Mars Atmosphere on Plasma Emission and Study of Factors Influencing Plasma Emission with the Use of Doehlert Designs , 2003, Applied spectroscopy.

[57]  Mohamad Sabsabi,et al.  Determination of isotope ratios using Laser-Induced Breakdown Spectroscopy in ambient air at atmospheric pressure for nuclear forensics , 2011 .

[58]  A. E. Pichahchy,et al.  Elemental analysis of metals under water using laser-induced breakdown spectroscopy , 1997 .

[59]  Stewart Clegg,et al.  Strategies for Mars remote Laser-Induced Breakdown Spectroscopy analysis of sulfur in geological samples , 2011 .

[60]  T. Maruyama,et al.  Spectrochemical Analysis of Metal Elements Electrodeposited from Water Samples by Laser-Induced Shock Wave Plasma Spectroscopy , 2001 .

[61]  L. Marinangeli,et al.  Investigation of LIBS feasibility for in situ planetary exploration: An analysis on Martian rock analogues , 2004 .

[62]  Leon J. Radziemski,et al.  Detection of Uranium Using Laser-Induced Breakdown Spectroscopy , 2009, Applied spectroscopy.

[63]  Sergei V. Kukhlevsky,et al.  Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples , 2000 .

[64]  S. J. Rehse,et al.  Escherichia coli identification and strain discrimination using nanosecond laser-induced breakdown spectroscopy , 2007 .

[65]  Richard E. Whipple,et al.  Standoff Detection of High Explosive Materials at 50 Meters in Ambient Light Conditions Using a Small Raman Instrument , 2005, Applied spectroscopy.

[66]  Shiv k. Sharma,et al.  New trends in telescopic remote Raman spectroscopic instrumentation. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[67]  Alain Petit,et al.  Isotope ratio determination of uranium by optical emission spectroscopy on a laser-produced plasma - basic investigations and analytical results , 1998 .

[68]  R. Sagdeev,et al.  Methods of remote surface chemical analysis for asteroid missions , 1985 .

[69]  Steven W. Squyres,et al.  The new Athena alpha particle X‐ray spectrometer for the Mars Exploration Rovers , 2003 .

[70]  L. J. Radziemski,et al.  Laser-induced breakdown spectroscopy: Time-resolved spectrochemical applications , 1981 .

[71]  Wolfgang Schade,et al.  Rapid test for the detection of hazardous microbiological material , 2009, Security + Defence.

[72]  David A. Cremers,et al.  Determination of Uranium in Solution Using Laser-Induced Breakdown Spectroscopy , 1987 .

[73]  A. Michel,et al.  Double pulse laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: interrelationship of gate delay, pulse energies, interpulse delay, and pressure. , 2008, Applied optics.

[74]  Mohamad Sabsabi,et al.  Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy. , 2004, Journal of pharmaceutical and biomedical analysis.