Approaching Optimality for Solving SDD Linear Systems

We present an algorithm that on input of an $n$-vertex $m$-edge weighted graph $G$ and a value $k$, produces an {\em incremental sparsifier} $\hat{G}$ with $n-1 + m/k$ edges, such that the condition number of $G$ with $\hat{G}$ is bounded above by $\tilde{O}(k\log^2 n) $, with probability $1-p$. The algorithm runs in time $$\tilde{O}((m \log{n} + n\log^2{n})\log(1/p)).$$ As a result, we obtain an algorithm that on input of an $n\times n$ symmetric diagonally dominant matrix $A$ with $m$ non-zero entries and a vector $b$, computes a vector ${x}$ satisfying $| |{x}-A^{+}b| |_A

[1]  David R. Karger,et al.  Approximating s – t Minimum Cuts in ~ O(n 2 ) Time , 2007 .

[2]  Anil Joshi Topics in optimization and sparse linear systems , 1997 .

[3]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[4]  Sivan Toledo,et al.  Support-Graph Preconditioners , 2005, SIAM J. Matrix Anal. Appl..

[5]  D. Spielman Algorithms, Graph Theory, and Linear Equations in Laplacian Matrices , 2011 .

[6]  Noga Alon,et al.  A Graph-Theoretic Game and Its Application to the k-Server Problem , 1995, SIAM J. Comput..

[7]  Bruce Hendrickson,et al.  Support Theory for Preconditioning , 2003, SIAM J. Matrix Anal. Appl..

[8]  Bruce Hendrickson,et al.  Solving Elliptic Finite Element Systems in Near-Linear Time with Support Preconditioners , 2004, SIAM J. Numer. Anal..

[9]  Aleksander Madry,et al.  Faster Generation of Random Spanning Trees , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[10]  Shang-Hua Teng,et al.  Solving Sparse, Symmetric, Diagonally-Dominant Linear Systems in Time O(m1.31) , 2003, ArXiv.

[11]  Ittai Abraham,et al.  Nearly Tight Low Stretch Spanning Trees , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[12]  Nancy S. Pollard,et al.  Real-time gradient-domain painting , 2008, ACM Trans. Graph..

[13]  Shang-Hua Teng,et al.  Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems , 2003, STOC '04.

[14]  Shang-Hua Teng,et al.  The Laplacian Paradigm: Emerging Algorithms for Massive Graphs , 2010, TAMC.

[15]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[16]  Peter G. Doyle,et al.  Random Walks and Electric Networks: REFERENCES , 1987 .

[17]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[18]  Gary L. Miller,et al.  Approaching optimality for solving SDD systems , 2010, ArXiv.

[19]  D. Rose,et al.  Generalized nested dissection , 1977 .

[20]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, ACM Trans. Graph..

[21]  Daniel A. Spielman,et al.  Faster approximate lossy generalized flow via interior point algorithms , 2008, STOC.

[22]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[23]  Nikhil Srivastava,et al.  Twice-ramanujan sparsifiers , 2008, STOC '09.

[24]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[25]  Noga Alon,et al.  Solving Linear Systems through Nested Dissection , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[26]  Amin Saberi,et al.  Subgraph sparsification and nearly optimal ultrasparsifiers , 2009, STOC '10.

[27]  Debmalya Panigrahi,et al.  A general framework for graph sparsification , 2010, STOC '11.

[28]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[29]  Yuval Peres,et al.  Finding sparse cuts locally using evolving sets , 2008, STOC '09.

[30]  Nikhil Srivastava,et al.  Graph sparsification by effective resistances , 2008, SIAM J. Comput..

[31]  Debmalya Panigrahi,et al.  A Linear-time Algorithm for Sparsification of Unweighted Graphs , 2010, ArXiv.

[32]  Gary L. Miller,et al.  Performance evaluation of a new parallel preconditioner , 1995, Proceedings of 9th International Parallel Processing Symposium.

[33]  Shang-Hua Teng,et al.  Electrical flows, laplacian systems, and faster approximation of maximum flow in undirected graphs , 2010, STOC '11.

[34]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[35]  Gary L. Miller,et al.  Combinatorial preconditioners and multilevel solvers for problems in computer vision and image processing , 2009, Comput. Vis. Image Underst..

[36]  P. Rowlinson ALGEBRAIC GRAPH THEORY (Graduate Texts in Mathematics 207) By CHRIS GODSIL and GORDON ROYLE: 439 pp., £30.50, ISBN 0-387-95220-9 (Springer, New York, 2001). , 2002 .

[37]  Robert E. Tarjan,et al.  Applications of Path Compression on Balanced Trees , 1979, JACM.

[38]  Rudolf Ahlswede,et al.  Strong converse for identification via quantum channels , 2000, IEEE Trans. Inf. Theory.

[39]  Shang-Hua Teng,et al.  Lower-stretch spanning trees , 2004, STOC '05.

[40]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[41]  Robert E. Tarjan,et al.  A linear-time algorithm for a special case of disjoint set union , 1983, J. Comput. Syst. Sci..

[42]  Mark Rudelson,et al.  Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.

[43]  Jonathan A. Kelner,et al.  Spectral Sparsification in the Semi-streaming Setting , 2013, Theory of Computing Systems.

[44]  Fan Chung Graham,et al.  Local Graph Partitioning using PageRank Vectors , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[45]  Shang-Hua Teng,et al.  Spectral partitioning works: planar graphs and finite element meshes , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[46]  Shang-Hua Teng,et al.  Solving sparse, symmetric, diagonally-dominant linear systems in time O(m/sup 1.31/ , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[47]  Gary L. Miller,et al.  A linear work, O(n1/6) time, parallel algorithm for solving planar Laplacians , 2007, SODA '07.

[48]  Gary L. Miller,et al.  Graph partitioning into isolated, high conductance clusters: theory, computation and applications to preconditioning , 2008, SPAA '08.