An Approach to Sugarcane Yield Estimation Using Sensors in the Harvester and ZigBee Technology

[1]  David Cox,et al.  Application of Precision Agriculture to Sugar Cane , 1999 .

[2]  Carlos Amiama,et al.  Design and field test of an automatic data acquisition system in a self-propelled forage harvester , 2008 .

[3]  F. J. Pierce,et al.  Regional and on-farm wireless sensor networks for agricultural systems in Eastern Washington , 2008 .

[4]  Paulo Sérgio Graziano Magalhães,et al.  Yield Monitoring of Sugar Cane , 2007 .

[5]  Wei Zhang,et al.  A Unified Framework for Street-View Panorama Stitching , 2016, Sensors.

[6]  M. Srbinovska,et al.  Environmental parameters monitoring in precision agriculture using wireless sensor networks , 2015 .

[7]  Randy R. Price,et al.  An Overhead Optical Yield Monitor for a Sugarcane Harvester Based on Two Optical Distance Sensors Mounted above the Loading Elevator , 2017 .

[8]  Leonardo Felipe Maldaner,et al.  Data processing within rows for sugarcane yield mapping , 2020 .

[9]  İlker Ünal Integration of ZigBee based GPS receiver to CAN network for precision farming applications , 2020, Peer Peer Netw. Appl..

[10]  Lucas R. Amaral,et al.  Canopy sensor placement for variable-rate nitrogen application in sugarcane fields , 2018, Precision Agriculture.

[11]  Fábio Henrique Rojo Baio Evaluation of an auto-guidance system operating on a sugar cane harvester , 2011, Precision Agriculture.

[12]  G. Sanches,et al.  Site-specific assessment of spatial and temporal variability of sugarcane yield related to soil attributes , 2019, Geoderma.

[13]  Tatiana Fernanda Canata,et al.  Sugarcane Harvester for In-field Data Collection: State of the Art, Its Applicability and Future Perspectives , 2020, Sugar Tech.

[14]  R. G. V. Bramley,et al.  SUGARCANE YIELD MONITORING: A PROTOCOL FOR YIELD MAP INTERPOLATION AND KEY CONSIDERATIONS IN THE COLLECTION OF YIELD DATA , 2013 .

[15]  G. Aiello,et al.  A decision support system based on multisensor data fusion for sustainable greenhouse management , 2018 .

[16]  José Paulo Molin,et al.  Sugarcane Yield Mapping Using High-Resolution Imagery Data and Machine Learning Technique , 2021, Remote. Sens..

[17]  José Paulo Molin,et al.  PATH ERRORS IN SUGARCANE TRANSSHIPMENT TRAILERS , 2020 .

[18]  Loretta Ichim,et al.  Advanced UAV–WSN System for Intelligent Monitoring in Precision Agriculture † , 2020, Sensors.

[20]  José Paulo Molin,et al.  Field-testing of a sugar cane yield monitor in Brazil , 2004 .

[21]  Kok-Lim Alvin Yau,et al.  A Distributed Testbed for 5G Scenarios: An Experimental Study , 2020, Sensors.

[22]  Simon Blackmore,et al.  Remedial Correction of Yield Map Data , 2004, Precision Agriculture.

[23]  Rosdiadee Nordin,et al.  Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review , 2017, Sensors.

[24]  Wenting Han,et al.  Remote monitoring system for agricultural information based on wireless sensor network , 2017 .

[25]  José Paulo Molin,et al.  Predicting the sugarcane yield in real-time by harvester engine parameters and machine learning approaches , 2021, Comput. Electron. Agric..

[26]  Hazaël Jones,et al.  A general method to filter out defective spatial observations from yield mapping datasets , 2017, Precision Agriculture.

[27]  Wenting Han,et al.  A survey on wireless sensor network infrastructure for agriculture , 2013, Comput. Stand. Interfaces.

[28]  Stavros G. Vougioukas,et al.  Estimation of Worker Fruit-Picking Rates with an Instrumented Picking Bag , 2020, Transactions of the ASABE.

[31]  Yuri Shendryk,et al.  Integrating satellite imagery and environmental data to predict field-level cane and sugar yields in Australia using machine learning , 2021 .

[32]  Narendra Singh Raghuwanshi,et al.  Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges , 2015, Comput. Electron. Agric..

[33]  Márcia Azanha Ferraz Dias de Moraes,et al.  Adoption and use of precision agriculture technologies in the sugarcane industry of São Paulo state, Brazil , 2011, Precision Agriculture.

[34]  José Paulo Molin,et al.  Sensor Fusion with NARX Neural Network to Predict the Mass Flow in a Sugarcane Harvester , 2021, Sensors.