Signals of dark matter in a supersymmetric two dark matter model

Supersymmetric radiative neutrino mass models have often two dark matter candidates. One is the usual lightest neutralino with odd R parity and the other is a new neutral particle whose stability is guaranteed by a discrete symmetry that forbids tree-level neutrino Yukawa couplings. If their relic abundance is comparable, dark matter phenomenology can be largely different from the minimal supersymmetric standard model (MSSM). We study this in a supersymmetric radiative neutrino mass model with the conserved R parity and a Z2 symmetry weakly broken by the anomaly effect. The second dark matter with odd parity of this new Z2 is metastable and decays to the neutralino dark matter. Charged particles and photons associated to this decay can cause the deviation from the expected background of the cosmic rays. Direct search of the neutralino dark matter is also expected to show different features from the MSSM since the relic abundance is not composed of the neutralino dark matter only. We discuss the nature of dark matter in this model by analyzing these signals quantitatively.

[1]  Anna Zilnyk A brief introduction to… , 2011 .

[2]  T Glanzman,et al.  Measurement of the cosmic ray e+ +e- spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope. , 2009, Physical review letters.

[3]  Tianjun Li,et al.  ATIC and PAMELA Results on Cosmic e+- Excesses and Neutrino Masses , 2009, 0901.0176.

[4]  D. Seckel,et al.  Three exceptions in the calculation of relic abundances. , 1991, Physical review. D, Particles and fields.

[5]  Mario Kadastik,et al.  Model-independent implications of the e , p cosmic ray spectra on properties of Dark Matter , 2008, 0809.2409.

[6]  P. Ramond,et al.  Anomalous U(1) and low-energy physics: the power of D-flatness and holomorphy , 1996, hep-ph/9612442.

[7]  M. Tytgat,et al.  Neutrinos from Inert Doublet dark matter , 2009, 0901.1750.

[8]  Cold dark matter, radiative neutrino mass, μ→eγ, and neutrinoless double beta decay , 2006, hep-ph/0604114.

[9]  G. C. Barbarino,et al.  An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV , 2009, Nature.

[10]  Indications of neutrino oscillation in a 250 km long-baseline experiment. , 2002, Physical review letters.

[11]  Significant gamma lines from inert Higgs dark matter. , 2007, Physical review letters.

[12]  Heavy wino-like neutralino dark matter annihilation into antiparticles , 2005, hep-ph/0511118.

[13]  Takashi Toma,et al.  NEUTRINO MASSES AND μ TERMS IN A SUPERSYMMETRIC EXTRA U(1) MODEL , 2009, 0910.3086.

[14]  H. Ohki,et al.  Nucleon sigma term and strange quark content in 2+1-flavor QCD with dynamical overlap fermions , 2009, 0910.3271.

[15]  for the BaBar Collaboration , 2001 .

[16]  D. Hooper,et al.  High energy positrons from annihilating dark matter , 2008, 0809.1683.

[17]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[18]  H. Yüksel,et al.  Constrained minimal supersymmetric standard model spectroscopy in light of PAMELA and ATIC observations , 2009 .

[19]  Shigeki Matsumoto,et al.  Explosive dark matter annihilation. , 2003, Physical review letters.

[20]  B. Aubert,et al.  Searches for Lepton Flavor Violation in the Decays ! e and ! , 2010 .

[21]  Hyungdo Kim,et al.  Supersymmetry hierarchy problems and anomalous horizontal U(1) symmetry , 1996, hep-ph/9611293.

[22]  P. W. Cattaneo,et al.  A limit for the μ→eγ decay from the MEG experiment , 2009, 0908.2594.

[23]  Takashi Toma,et al.  Dark matter in the supersymmetric radiative seesaw model with an anomalous U(1) symmetry , 2010, 1011.2839.

[24]  W. Keung,et al.  PAMELA and dark matter , 2008, 0809.0162.

[25]  E. Ma Z3 dark matter and two-loop neutrino mass , 2007, 0708.3371.

[26]  Riccardo Barbieri,et al.  Improved naturalness with a heavy Higgs boson: An alternative road to CERN LHC physics , 2006, hep-ph/0603188.

[27]  Q. Yuan,et al.  PAMELA data and leptonically decaying dark matter , 2008, 0811.0176.

[28]  A. Ibarra,et al.  Probing Gravitino Dark Matter with PAMELA and Fermi , 2009, 0906.1187.

[29]  S. Pascoli,et al.  Is it possible to explain neutrino masses with scalar dark matter , 2008 .

[30]  S Hatakeyama,et al.  First results from KamLAND: evidence for reactor antineutrino disappearance. , 2003, Physical review letters.

[31]  S. Dimopoulos,et al.  Astrophysical probes of unification , 2008, 0812.2075.

[32]  K. Hamaguchi,et al.  Cosmic ray positron and electron excess from hidden-fermion dark matter decays , 2008, 0812.2374.

[33]  A. Strumia,et al.  Robust implications on dark matter from the first FERMI sky γ map , 2009, 0912.0742.

[34]  R. C. Allen,et al.  Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. , 2002, Physical review letters.

[35]  Peter Skands,et al.  A brief introduction to PYTHIA 8.1 , 2007, Comput. Phys. Commun..

[36]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[37]  R. Young,et al.  Dark Matter, the MCSSM and lattice QCD , 2009, 0907.4177.

[38]  University of Torino,et al.  Positrons from dark matter annihilation in the galactic halo: Theoretical uncertainties , 2007, 0712.2312.

[39]  L. Ibáñez,et al.  Fermion masses and mixing angles from gauge symmetries , 1994, hep-ph/9403338.

[40]  A. Strumia,et al.  Dark Matter Interpretations of the Electron/Positron Excesses after FERMI , 2009, 0905.0480.

[41]  R. Nichol,et al.  Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.

[42]  D. A. Sierra,et al.  Radiative seesaw model : Warm dark matter, collider signatures, and lepton flavor violating signals , 2008, 0808.3340.

[43]  A. Ibarra,et al.  Antimatter signatures of gravitino dark matter decay , 2008, 0804.4596.

[44]  C. Chen,et al.  ATIC/PAMELA anomaly from fermionic decaying dark matter , 2009, 0901.2681.

[45]  H. Nielsen,et al.  Hierarchy of Quark Masses, Cabibbo Angles and CP Violation , 1979 .

[46]  A. Ibarra,et al.  Decaying Dark Matter and the PAMELA Anomaly , 2008, 0811.1555.

[47]  C. Weniger,et al.  Gamma-ray lines from radiative dark matter decay , 2010, 1011.3786.

[48]  S. Dimopoulos,et al.  Decaying Dark Matter As a Probe of Unification And TeV Spectroscopy , 2009, 0904.2789.

[49]  E Aprile,et al.  First dark matter results from the XENON100 experiment. , 2010, Physical review letters.

[50]  T. Moroi,et al.  High energy cosmic rays from the decay of gravitino dark matter , 2008, 0805.1133.

[51]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[52]  R. Young,et al.  Dark matter, constrained minimal supersymmetric standard model, and lattice QCD. , 2009, Physical review letters.

[53]  A. Strumia,et al.  Decaying dark matter can explain the e? excesses , 2008, 0811.4153.

[54]  Zuowei Liu,et al.  PAMELA positron excess as a signal from the hidden sector , 2008, 0810.5762.

[55]  Production and propagation of cosmic ray positrons and electrons , 1997, astro-ph/9710124.

[56]  S. Kanemura,et al.  Neutrino mass, dark matter, and Baryon asymmetry via TeV-scale physics without fine-tuning. , 2008, Physical review letters.

[57]  M. Lattanzi,et al.  Decaying warm dark matter and neutrino masses. , 2007, Physical review letters.

[58]  Takashi Toma,et al.  Enhancement of the annihilation of dark matter in a radiative seesaw model , 2010, 1002.3225.

[59]  Maria Beltran,et al.  Deducing the nature of dark matter from direct and indirect detection experiments in the absence of collider signatures of new physics , 2008, 0808.3384.

[60]  S. P. Martin,et al.  Dynamical supersymmetry breaking in models with a Green–Schwarz mechanism , 1998, hep-ph/9803432.

[61]  S. Kim,et al.  Evidence for oscillation of atmospheric neutrinos , 1998 .

[62]  Yukawa textures and anomalies , 1994, hep-ph/9412385.

[63]  Turner,et al.  Supersymmetric dark matter above the W mass. , 1990, Physical review. D, Particles and fields.

[64]  F. Takahashi,et al.  R-violating decay of Wino dark matter and electron/positron excesses in the PAMELA/Fermi experiments , 2009, 0905.0388.

[65]  Q. Cao,et al.  Dark Matter: The Leptonic Connection , 2009, 0901.1334.

[66]  D 6 family symmetry and cold dark matter at CERN LHC , 2006, hep-ph/0610072.

[67]  M. Drees,et al.  Neutralino relic density in minimal N=1 supergravity. , 1992, Physical Review D, Particles and fields.

[68]  M. L. Brooks,et al.  New limit for the family number nonconserving decay mu+ ---> e+ gamma , 1999, hep-ex/9905013.

[69]  Positron propagation and fluxes from neutralino annihilation in the halo , 1998, astro-ph/9808243.

[70]  Gravitino Dark Matter without R-parity , 2000, hep-ph/0005214.

[71]  H. Murayama,et al.  Breit-Wigner Enhancement of Dark Matter Annihilation , 2008, 0812.0072.

[72]  Yukawa textures with an anomalous horizontal Abelian symmetry , 1996, hep-ph/9601243.

[73]  Jonathan L. Feng Dark Matter Candidates from Particle Physics and Methods of Detection , 2010, 1003.0904.

[74]  T. Moroi,et al.  High Energy Cosmic Rays from Decaying Supersymmetric Dark Matter , 2009, 0903.0242.

[75]  Neutrino masses and CDM in a non-supersymmetric model , 2006, hep-ph/0610006.

[76]  E. Ma,et al.  SINGLET FERMION DARK MATTER AND ELECTROWEAK BARYOGENESIS WITH RADIATIVE NEUTRINO MASS , 2007, 0708.3790.

[77]  John H. Schwarz,et al.  Anomaly cancellations in supersymmetric D=10 gauge theory and superstring theory , 1984 .

[78]  G. C. Barbarino,et al.  Observation of an anomalous positron abundance in the cosmic radiation , 2008, 0810.4995.

[79]  Gregory Peim,et al.  Multicomponent Dark Matter in Supersymmetric Hidden Sector Extensions , 2010, 1004.0649.

[80]  D. Suematsu Leptogenesis and dark matter unified in a non-SUSY model for neutrino masses , 2007, 0706.2401.

[81]  Astronomy,et al.  A Model for neutrino masses and dark matter , 2002, hep-ph/0210389.

[82]  Ernest Ma Verifiable radiative seesaw mechanism of neutrino mass and dark matter , 2006 .

[83]  D. Suematsu,et al.  Anomaly induced dark matter decay and PAMELA/ATIC experiments , 2009, 0905.2847.

[84]  S. Kanemura,et al.  Model of TeV scale physics for neutrino mass, dark matter, and baryon asymmetry and its phenomenology , 2009, 0904.3829.

[85]  D O Caldwell,et al.  Dark Matter Search Results from the CDMS II Experiment , 2009, Science.

[86]  K. Cheung,et al.  Phenomenology of a TeV right-handed neutrino and the dark matter model , 2004, hep-ph/0403003.

[87]  E. Ma,et al.  FERMION TRIPLET DARK MATTER AND RADIATIVE NEUTRINO MASS , 2008, 0809.0942.

[88]  K. Griest,et al.  Supersymmetric dark matter , 1992 .