Isosurface construction in any dimension using convex hulls

We present an algorithm for constructing isosurfaces in any dimension. The input to the algorithm is a set of scalar values in a d-dimensional regular grid of (topological) hypercubes. The output is a set of (d-1)-dimensional simplices forming a piecewise linear approximation to the isosurface. The algorithm constructs the isosurface piecewise within each hypercube in the grid using the convex hull of an appropriate set of points. We prove that our algorithm correctly produces a triangulation of a (d-1 )-manifold with boundary. In dimensions three and four, lookup tables with 2/sup 8/ and 2/sup 16/ entries, respectively, can be used to speed the algorithm's running time. In three dimensions, this gives the popular marching cubes algorithm. We discuss applications of four-dimensional isosurface construction to time varying isosurfaces, interval volumes, and morphing.

[1]  Gregory M. Nielson,et al.  Interval volume tetrahedrization , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[2]  Jane Wilhelms,et al.  Multi-dimensional trees for controlled volume rendering and compression , 1994, VVS '94.

[3]  I. Fujishiro,et al.  Volumetric Data Exploration Using Interval Volume , 1996, IEEE Trans. Vis. Comput. Graph..

[4]  J. Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[5]  David C. Banks,et al.  Extracting iso-valued features in 4-dimensional scalar fields , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[6]  Kurt Mehlhorn,et al.  Four Results on Randomized Incremental Constructions , 1992, Comput. Geom..

[7]  P. Hanrahan,et al.  Area and volume coherence for efficient visualization of 3D scalar functions , 1990, VVS.

[8]  Roberto Scopigno,et al.  A modified look-up table for implicit disambiguation of Marching Cubes , 1994, The Visual Computer.

[9]  P. Shirley,et al.  A polygonal approximation to direct scalar volume rendering , 1990, VVS.

[10]  Roger Crawfis,et al.  Isosurfacing in higher dimensions , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[11]  Nelson L. Max Consistent Subdivision of Convex Polyhedra into Tetrahedra , 2001, J. Graphics, GPU, & Game Tools.

[12]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[13]  David C. Banks,et al.  Complex-valued contour meshing , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[14]  Charles D. Hansen,et al.  Isosurface extraction in time-varying fields using a Temporal Branch-on-Need Tree (T-BON) , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[15]  Bernd Hamann,et al.  The asymptotic decider: resolving the ambiguity in marching cubes , 1991, Proceeding Visualization '91.

[16]  Han-Wei Shen,et al.  Isosurface extraction in time-varying fields using a temporal hierarchical index tree , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[17]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[18]  Martin J. Dürst,et al.  Re , 1988 .