Growth, photosynthetic pigments and production of essential oil of long-pepper under different light conditions.

Piper hispidinervum C. DC. is popularly known as long-pepper and it owns a commercial value due to the essential oil it produces. Long-pepper oil is rich in safrole and eugenoln components that have insecticidal, fungicidal and bactericidal activity. It has been establish that to medicinal plants light influences not only growth but also essential oil production. The growth, the content of photosynthetic pigments and the essential oil production of Piper hispidinervum at greenhouses with different light conditions was evaluated. The treatments were characterized by cultivation of plants for 180 days under different light conditions, produced by shading greenhouses with 50% and 30% of natural incident irradiance, two colored shading nets red (RN) and blue (BN) both blocking 50% of the incident radiation and one treatment at full-sun (0% of shade). The results showed that the treatments of 50% shade and RN and BN were the ones which stimulated the greater growth. Blue and red light also had the best production of photosynthetic pigments. Essential oil yielded more under full sun therefore this is the most indicated condition to produce seedlings for the chemical and pharmaceutical industry.

[1]  F. Pacheco,et al.  Growth and production of secondary compounds in monkey-pepper (Piper aduncum L.) leaves cultivated under altered ambient light , 2014 .

[2]  C. Giviziez Atividade antimicrobiana de óleos essenciais de Piper aduncum, Piper hispidinervum e Syzygium aromaticum e desenvolvimento de um antisséptico com princípio ativo natural , 2014 .

[3]  J. Lira,et al.  Gas Exchange and Production of Photosynthetic Pigments of Piper aduncum L. Grown at Different Irradiances , 2013 .

[4]  Anacleto Ranulfo dos Santos,et al.  Crescimento vegetativo e produção de óleo essencial de plantas de alecrim cultivadas sob telas coloridas = Vegetative growth and yield of essential oil of the rosemary plants development when cultivated under colored screens , 2013 .

[5]  A. Giorgi,et al.  Secondary metabolites and antioxidant capacities of Waldheimia glabra (Decne.) Regel from Nepal. , 2013, Journal of the science of food and agriculture.

[6]  E. González-Burgos,et al.  Terpene compounds in nature: a review of their potential antioxidant activity. , 2012, Current medicinal chemistry.

[7]  K. Ratner,et al.  RESPONSE OF PHOTOSYNTHETIC PARAMETERS OF SWEET PEPPER LEAVES TO LIGHT QUALITY MANIPULATION BY PHOTOSELECTIVE SHADE NETS , 2012 .

[8]  J. Pinto,et al.  Crescimento vegetativo e produção de óleo essencial de hortelã‑pimenta cultivada sob malhas , 2012 .

[9]  A. Soares,et al.  Crescimento, teor de óleo essencial e conteúdo de cumarina de plantas jovens de guaco (Mikania glomerata Sprengel) cultivadas sob malhas coloridas , 2011 .

[10]  L. Amarante,et al.  Crescimento e produção de pigmentos fotossintéticos em Achillea millefolium L. cultivada sob diferentes níveis de sombreamento e doses de nitrogênio , 2011 .

[11]  Ruili Li,et al.  Effects of salt and alkali stresses on germination, growth, photosynthesis and ion accumulation in alfalfa (Medicago sativa L.) , 2010 .

[12]  E. Alves,et al.  Effects of coloured shade netting on the vegetative development and leaf structure of Ocimum selloi. , 2010 .

[13]  P. Souza,et al.  Potencial fungitóxico do óleo essencial de Piper hispidinervum (pimenta longa) sobre os fungos fitopatogênicos Bipolaris sorokiniana, Fusarium oxysporum e Colletotrichum gloeosporioides , 2009 .

[14]  F. Costa,et al.  Composição da matriz de encapsulamento na formação e conversão de sementes sintéticas de pimenta-longa , 2008 .

[15]  P. Souza,et al.  Efeito do óleo essencial de pimenta longa (Piper hispidinervum C. DC) e do emulsificante Tween® 80 sobre o crescimento micelial de Alternaria alternata (Fungi: Hyphomycetes) , 2008 .

[16]  E. R. Martins,et al.  Influência do sombreamento na produção de fitomassa e óleo essencial em alecrim-pimenta (Lippia sidoides Cham.) , 2007 .

[17]  J. Gershenzon,et al.  The function of terpene natural products in the natural world. , 2007, Nature chemical biology.

[18]  M. Buckeridge,et al.  Growth, photosynthesis and stress indicators in young rosewood plants (Aniba rosaeodora Ducke) under different light intensities , 2005 .

[19]  J. F. C. Gonçalves,et al.  Utilization of the chlorophyll a fluorescence technique as a tool for selecting tolerant species to environments of high irradiance , 2005 .

[20]  Marcos Roberto da Silva,et al.  Efeito da época e freqüência de corte de pimenta longa (Piper hispidinervum C. DC.) no rendimento de óleo essencial , 2005 .

[21]  S. Alves,et al.  Produção de biomassa aérea de pimenta longa cultivada em diferentes espaçamentos. , 2005 .

[22]  T. Kinoshita,et al.  Blue-Light- and Phosphorylation-Dependent Binding of a 14-3-3 Protein to Phototropins in Stomatal Guard Cells of Broad Bean1 , 2003, Plant Physiology.

[23]  Hartmut K. Lichtenthaler,et al.  Extraction of Phtosynthetic Tissues:Chlorophylls and Carotenoids , 2001 .

[24]  E. Spalding,et al.  Light-induced growth promotion by SPA1 counteracts phytochrome-mediated growth inhibition during de-etiolation. , 2001, Plant physiology.

[25]  Páez,et al.  Growth, soluble carbohydrates, and aloin concentration of Aloe vera plants exposed to three irradiance levels. , 2000, Environmental and experimental botany.

[26]  T. Koike,et al.  Susceptibility to photoinhibition of three deciduous broadleaf tree species with different successional traits raised under various light regimes , 2000 .

[27]  L. Sangoi,et al.  Conceito de ideotipo e seu uso no aumento do rendimento potencial de cereais , 1998 .