A new NMR solution structure of the SL1 HIV-1Lai loop–loop dimer

Dimerization of genomic RNA is directly related with the event of encapsidation and maturation of the virion. The initiating sequence of the dimerization is a short autocomplementary region in the hairpin loop SL1. We describe here a new solution structure of the RNA dimerization initiation site (DIS) of HIV-1Lai. NMR pulsed field-gradient spin-echo techniques and multidimensional heteronuclear NMR spectroscopy indicate that this structure is formed by two hairpins linked by six Watson–Crick GC base pairs. Hinges between the stems and the loops are stabilized by intra and intermolecular interactions involving the A8, A9 and A16 adenines. The coaxial alignment of the three A-type helices present in the structure is supported by previous crystallography analysis but the A8 and A9 adenines are found in a bulged in position. These data suggest the existence of an equilibrium between bulged in and bulged out conformations in solution.

[1]  P. Moore,et al.  The structure of an essential splicing element: stem loop IIa from yeast U2 snRNA. , 1997, Structure.

[2]  Y. Chien,et al.  High-molecular-weight RNAs of AKR, NZB, and wild mouse viruses and avian reticuloendotheliosis virus all have similar dimer structures , 1978, Journal of virology.

[3]  M. Mihailescu,et al.  A proton-coupled dynamic conformational switch in the HIV-1 dimerization initiation site kissing complex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[4]  W. Bender,et al.  Mapping of poly(A) sequences in the electron microscope reveals unusual structure of type C oncornavirus RNA molecules , 1976, Cell.

[5]  S. Grzesiek,et al.  Direct Observation of Hydrogen Bonds in Nucleic Acid Base Pairs by Internucleotide 2JNN Couplings , 1998 .

[6]  E. Westhof,et al.  Non-canonical interactions in a kissing loop complex: the dimerization initiation site of HIV-1 genomic RNA. , 1997, Journal of molecular biology.

[7]  H. Stuhlmann,et al.  Homologous recombination of copackaged retrovirus RNAs during reverse transcription , 1992, Journal of virology.

[8]  Wei-Shau Hu,et al.  Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudodiploidy and high rate of genetic recombination. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Serena Bernacchi,et al.  Exciton interaction in molecular beacons: a sensitive sensor for short range modifications of the nucleic acid structure , 2001, Nucleic Acids Res..

[10]  A. Pardi,et al.  An efficient procedure for assignment of the proton, carbon and nitrogen resonances in 13C/15N labeled nucleic acids. , 1993, Journal of molecular biology.

[11]  M. Schwartz,et al.  Efficient encapsidation of human immunodeficiency virus type 1 vectors and further characterization of cis elements required for encapsidation , 1997, Journal of virology.

[12]  C. Ehresmann,et al.  Dimerization of human immunodeficiency virus type 1 RNA involves sequences located upstream of the splice donor site. , 1994, Nucleic acids research.

[13]  H. Temin,et al.  Retrovirus variation and reverse transcription: abnormal strand transfers result in retrovirus genetic variation. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[14]  A. Cann,et al.  Evidence that a kissing loop structure facilitates genomic RNA dimerisation in HIV-1. , 1996, Journal of molecular biology.

[15]  G. Kawai,et al.  Structural requirement for the two-step dimerization of human immunodeficiency virus type 1 genome. , 2000, RNA.

[16]  T. Parslow,et al.  Mutant human immunodeficiency virus type 1 genomes with defects in RNA dimerization or encapsidation , 1997, Journal of virology.

[17]  T. Huynh-Dinh,et al.  The HIV-1(Lai) RNA dimerization. Thermodynamic parameters associated with the transition from the kissing complex to the extended dimer. , 2000, European Journal of Biochemistry.

[18]  O. Uhlenbeck,et al.  Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. , 1987, Nucleic acids research.

[19]  N. Windbichler,et al.  Kissing complex-mediated dimerisation of HIV-1 RNA: coupling extended duplex formation to ribozyme cleavage. , 2003, Nucleic acids research.

[20]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[21]  H. Varmus,et al.  The Molecular Biology of RNA Tumor Viruses , 1975 .

[22]  S. Höglund,et al.  Ultrastructure of HIV-1 genomic RNA. , 1997, Virology.

[23]  N. Kobayashi [Structure of retroviral genome]. , 1992, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[24]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[25]  J. Marino,et al.  Mechanism of nucleocapsid protein catalyzed structural isomerization of the dimerization initiation site of HIV-1. , 2002, Biochemistry.

[26]  J. Coffin Structure of the retroviral genome , 1982 .

[27]  Thomas L. James,et al.  Structure of the dimer a initiation complex of HIV-1 genomic RNA , 1998, Nature Structural Biology.

[28]  Wei-Shau Hu,et al.  Retroviral recombination and reverse transcription. , 1990, Science.

[29]  M. Wainberg,et al.  Compensatory Point Mutations in the Human Immunodeficiency Virus Type 1 Gag Region That Are Distal from Deletion Mutations in the Dimerization Initiation Site Can Restore Viral Replication , 1998, Journal of Virology.

[30]  H. Temin Sex and recombination in retroviruses. , 1991, Trends in genetics : TIG.

[31]  R. Lavery,et al.  Defining the structure of irregular nucleic acids: conventions and principles. , 1989, Journal of biomolecular structure & dynamics.

[32]  C. Ehresmann,et al.  Identification of the primary site of the human immunodeficiency virus type 1 RNA dimerization in vitro. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[33]  T. Huynh-Dinh,et al.  Dimer initiation sequence of HIV-1Lai genomic RNA: NMR solution structure of the extended duplex. , 1999, Journal of biomolecular structure & dynamics.

[34]  J. Feigon,et al.  Two-and three-dimensional HCN experiments for correlating base and sugar resonances in 15N, 13C-labeled RNA oligonucleotides , 1993, Journal of biomolecular NMR.

[35]  M. Wainberg,et al.  Impact of Human Immunodeficiency Virus Type 1 RNA Dimerization on Viral Infectivity and of Stem-Loop B on RNA Dimerization and Reverse Transcription and Dissociation of Dimerization from Packaging , 2000, Journal of Virology.

[36]  M. Wainberg,et al.  Variant effects of non-native kissing-loop hairpin palindromes on HIV replication and HIV RNA dimerization: role of stem-loop B in HIV replication and HIV RNA dimerization. , 1999, Biochemistry.

[37]  D. Muriaux,et al.  Dimerization of HIV-1Lai RNA at Low Ionic Strength , 1995, The Journal of Biological Chemistry.

[38]  M. Laughrea,et al.  Kissing-loop model of HIV-1 genome dimerization: HIV-1 RNAs can assume alternative dimeric forms, and all sequences upstream or downstream of hairpin 248-271 are dispensable for dimer formation. , 1996, Biochemistry.

[39]  C. Kuiken,et al.  Genetic analysis reveals epidemiologic patterns in the spread of human immunodeficiency virus. , 2000, American journal of epidemiology.

[40]  R Lavery,et al.  The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. , 1988, Journal of biomolecular structure & dynamics.

[41]  T. Huynh-Dinh,et al.  The HIV‐1Lai RNA dimerization , 2000 .

[42]  C. Ehresmann,et al.  A loop-loop "kissing" complex is the essential part of the dimer linkage of genomic HIV-1 RNA. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Through-bond correlation of adenine H2 and H8 protons in unlabeled DNA fragments by HMBC spectroscopy , 1996, Journal of biomolecular NMR.

[44]  F. Studier,et al.  Cloning and expression of the gene for bacteriophage T7 RNA polymerase. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Fabien Kieken,et al.  HIV-1Lai genomic RNA: combined used of NMR and molecular dynamics simulation for studying the structure and internal dynamics of a mutated SL1 hairpin , 2002, European Biophysics Journal.

[46]  M. Laughrea,et al.  HIV-1 genome dimerization: formation kinetics and thermal stability of dimeric HIV-1Lai RNAs are not improved by the 1-232 and 296-790 regions flanking the kissing-loop domain. , 1996, Biochemistry.

[47]  Y. Chien,et al.  Chapter 10 – Electron Microscopic Analysis of the Structure of RNA Tumor Virus Nucleic Acids , 1980 .

[48]  D. Muriaux,et al.  A kissing complex together with a stable dimer is involved in the HIV-1Lai RNA dimerization process in vitro. , 1996, Biochemistry.

[49]  C. Ehresmann,et al.  Dimerization of retroviral genomic RNAs: structural and functional implications. , 1996, Biochimie.

[50]  Philippe Dumas,et al.  Crystal structures of coaxially stacked kissing complexes of the HIV-1 RNA dimerization initiation site , 2001, Nature Structural Biology.

[51]  A. Panganiban,et al.  Ordered interstrand and intrastrand DNA transfer during reverse transcription. , 1988, Science.

[52]  K. Wüthrich,et al.  Editing of 2D 1H NMR spectra using X half-filters. combined use with residue-selective 15N labeling of proteins , 1986 .

[53]  D. Crothers,et al.  Measurement of diffusion constants for nucleic acids by NMR , 1997, Journal of biomolecular NMR.