Enhanced densification of metal powders by transformation-mismatch plasticity

[1]  D. Dunand,et al.  Internal-stress plasticity in titanium by cyclic alloying/dealloying with hydrogen , 2001 .

[2]  D. Dunand,et al.  Load transfer during transformation superplasticity of Ti-6Al-4V/TiB whisker-reinforced composites , 2001 .

[3]  D. Dunand,et al.  Tensile fracture during transformation superplasticity of Ti–6Al–4V , 2001 .

[4]  D. Dunand,et al.  Whisker alignment of Ti–6Al–4V/TiB composites during deformation by transformation superplasticity , 2001 .

[5]  D. Dunand,et al.  Non-isothermal transformation-mismatch plasticity: Modeling and experiments on Ti-6Al-4V , 2001 .

[6]  Samuel M. Aanestad,et al.  Where is the science? , 2000, Journal of the American Dental Association.

[7]  D. Dunand,et al.  Contributions to transformation superplasticity of titanium from rigid particles and pressurized pores , 1999 .

[8]  P. Waldner Modelling of oxygen solubility in titanium , 1999 .

[9]  Norman A. Fleck,et al.  The viscoplastic compaction of composite powders , 1999 .

[10]  D. Dunand,et al.  Transformation superplasticity of super α2 titanium aluminide , 1998 .

[11]  D. Dunand,et al.  A non-linear model for internal stress superplasticity , 1997 .

[12]  D. Dunand,et al.  Biaxial deformation of Ti-6Al-4V and Ti-6Al-4V/TiC composites by transformation-mismatch superplasticity , 1997 .

[13]  V. Lindroos,et al.  Consolidation behavior of a particle reinforced metal matrix composite during HIPing , 1996 .

[14]  G. Daehn,et al.  Densification of composite powder compacts in pressure cycling , 1996 .

[15]  D. Dunand,et al.  Transformation-mismatch superplasticity in reinforced and unreinforced titanium , 1996 .

[16]  A. Ghosh,et al.  Superplasticity and superplastic forming, 1995 , 1995 .

[17]  E. Collings,et al.  Materials Properties Handbook: Titanium Alloys , 1994 .

[18]  이종수,et al.  초소성과 초소성 성형 ( Superplasticity and Superplastic Forming ) , 1993 .

[19]  P. Funkenbusch,et al.  Modeling of the densification rates of monosized and bimodal-sized particle systems during hot isostatic pressing (HIP) , 1989 .

[20]  D. Bouvard,et al.  A simulation material for modelling the hot-forming of metal powders , 1986 .

[21]  M. Ashby,et al.  Hot isostatic pressing diagrams : new developments , 1985 .

[22]  M. Ashby,et al.  Practical applications of hotisostatic Pressing diagrams: Four case studies , 1983 .

[23]  M. Ashby,et al.  Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics , 1982 .

[24]  E. Arzt The influence of an increasing particle coordination on the densification of spherical powders , 1982 .

[25]  L. E. Eiselstein,et al.  Superplasticity in Rapidly Solidified White Cast Irons , 1982 .

[26]  O. Sherby,et al.  Enhanced densification of white cast iron powders by cyclic phase transformations under stress , 1982 .

[27]  M. Ashby,et al.  Pressure sintering by power law creep , 1975 .

[28]  A. D. McQuillan,et al.  The science technology and application of titanium , 1971 .

[29]  D. Dunand,et al.  Hydrogen-induced internal-stress plasticity in titanium , 2001 .

[30]  Michelle M. Gauthier,et al.  Engineered materials handbook , 1995 .

[31]  R. N. Wright,et al.  Particle-Level Investigation of Densification During Uniaxial Hot Pressing: Continuum Modeling and Experiments , 1992 .

[32]  Theodore J. Reinhart,et al.  Engineered materials handbook , 1987 .

[33]  Hellmut F. Fischmeister,et al.  Densification of Powders by Particle Deformation , 1983 .

[34]  Y. S. Touloukian Thermal Expansion: Metallic Elements and Alloys , 1975 .