Synchronization transition in degenerate optical parametric oscillators induced by nonlinear coupling

In this paper, the synchronization of certain degenerate optical parametric oscillators is investigated in detail. Complete and/or partial synchronization can be reached when linear controller, constructed by the real part or imaginary part of the subharmonic mode, is imposed on the chaotic degenerate optical parametric oscillators with appropriate coupling intensity. The Lyapunov exponents under different coupling coefficients are calculated to find the critical condition for complete synchronization. Transition from complete synchronization to partial synchronization is observed when nonlinear coupling is introduced into the two chaotic oscillators. It is found that synchronization of chaotic oscillators keeps robust when the intensity of the nonlinear coupling is less than the intensity of the linear coupling; the complete synchronization state is destructed and transient period for partial synchronization is in certain delay when the intensity of the nonlinear coupling is beyond the intensity of the linear coupling.

[1]  Zhang Bo,et al.  Controlling chaos in permanent magnet synchronous motor based on finite-time stability theory , 2009 .

[2]  C. Chee,et al.  Secure digital communication using controlled projective synchronisation of chaos , 2005 .

[3]  M. Perc Stochastic resonance on excitable small-world networks via a pacemaker. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[5]  Shen Ke Synchronization of Chaotic Degenerate Optical Parametric Oscillator by Hyperchaotic Signal Modulating Parameter , 2007 .

[6]  Z. Duan,et al.  Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Guanrong Chen,et al.  Synchronization transitions on small-world neuronal networks: Effects of information transmission delay and rewiring probability , 2008 .

[8]  Brambilla,et al.  Formation and evolution of roll patterns in optical parametric oscillators. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[9]  Paul Mandel,et al.  Instabilities of the degenerate optical parametric oscillator , 1989 .

[10]  Li Shi-rong,et al.  Development and transition of spiral wave in the coupled Hindmarsh-Rose neurons in two-dimensional space , 2009 .

[11]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[12]  M. Perc Optimal spatial synchronization on scale-free networks via noisy chemical synapses. , 2009, Biophysical chemistry.

[13]  S. Boccaletti,et al.  The control of chaos: theory and applications , 2000 .

[14]  Kestutis Staliunas,et al.  Spatial-localized structures in degenerate optical parametric oscillators , 1998 .

[15]  Zhaosheng Feng,et al.  Synchronization transition in gap-junction-coupled leech neurons , 2008 .

[16]  Ma Jun,et al.  Chaotic signal-induced dynamics of degenerate optical parametric oscillator , 2008 .

[17]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[18]  Zuolei Wang,et al.  Anti-synchronization in two non-identical hyperchaotic systems with known or unknown parameters , 2009 .

[19]  Luo Xiao-Shu,et al.  Passive adaptive control of chaos in synchronous reluctance motor , 2008 .

[20]  M. Perc Visualizing the attraction of strange attractors , 2005 .

[21]  张波,et al.  Controlling chaos in permanent magnet synchronous motor based on finite-time stability theory , 2009 .

[22]  Matjaz Perc,et al.  Stochastic resonance on weakly paced scale-free networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Matjaz Perc,et al.  Synchronization of Regular and Chaotic oscillations: the Role of Local Divergence and the Slow Passage Effect - a Case Study on calcium oscillations , 2004, Int. J. Bifurc. Chaos.

[24]  Guanrong Chen,et al.  Synchronization Transition Induced by Synaptic Delay in Coupled Fast-Spiking Neurons , 2008, Int. J. Bifurc. Chaos.

[25]  Ya Jia,et al.  Robustness and breakup of the spiral wave in a two-dimensional lattice network of neurons , 2010 .

[26]  Anmar Khadra,et al.  Impulsive control and synchronization of spatiotemporal chaos , 2005 .

[27]  Xue-Rong Shi,et al.  Adaptive added-order anti-synchronization of chaotic systems with fully unknown parameters , 2009, Appl. Math. Comput..

[28]  Jun Ma,et al.  Optimize design of adaptive synchronization controllers and parameter observers in different hyperchaotic systems , 2010, Appl. Math. Comput..

[29]  徐振源,et al.  Adaptive projective synchronization of unified chaotic systems and its application to secure communication , 2007 .

[30]  Yushu Chen,et al.  Phase synchronization between nonlinearly coupled Rössler systems , 2008 .

[31]  Matjaz Perc,et al.  Detecting and controlling unstable periodic orbits that are not part of a chaotic attractor. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.