Predicting numeric ratings for Google apps using text features and ensemble learning

[1]  J. Fernando Sánchez-Rada,et al.  Enhancing deep learning sentiment analysis with ensemble techniques in social applications , 2020 .

[2]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[3]  Yongwan Park,et al.  BLocate: A Building Identification Scheme in GPS Denied Environments Using Smartphone Sensors , 2018, Sensors.

[4]  Gavin Hackeling,et al.  Mastering Machine Learning With scikit-learn , 2014 .

[5]  Yuanyuan Zhang,et al.  Customer Rating Reactions Can Be Predicted Purely using App Features , 2018, 2018 IEEE 26th International Requirements Engineering Conference (RE).

[6]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[7]  Alois Knoll,et al.  Gradient boosting machines, a tutorial , 2013, Front. Neurorobot..

[8]  Jian Pei,et al.  Data Mining : Concepts and Techniques 3rd edition Ed. 3 , 2011 .

[9]  M. B. Chandak,et al.  Opinion Mining and Analysis: A survey , 2013, ArXiv.

[10]  Leo Breiman,et al.  Randomizing Outputs to Increase Prediction Accuracy , 2000, Machine Learning.

[11]  Yoram Singer,et al.  Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.

[12]  Mark Heitmann,et al.  Comparing automated text classification methods , 2019, International Journal of Research in Marketing.

[13]  Greg Mori,et al.  A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials , 2016, Medical & Biological Engineering & Computing.