Chirality coupling in topological magnetic textures with multiple magnetochiral parameters

[1]  Yan Zhou,et al.  Bifurcation of a topological skyrmion string , 2022, Physical Review B.

[2]  S. Blugel,et al.  Magnetic hopfions in solids , 2019, APL Materials.

[3]  R. Cowburn,et al.  Complex free-space magnetic field textures induced by three-dimensional magnetic nanostructures , 2021, Nature Nanotechnology.

[4]  D. Makarov,et al.  New Dimension in Magnetism and Superconductivity: 3D and Curvilinear Nanoarchitectures , 2021, Advanced materials.

[5]  D. Sheka A perspective on curvilinear magnetism , 2021 .

[6]  M. Schmidt,et al.  Unveiling the three-dimensional magnetic texture of skyrmion tubes , 2021, Nature Nanotechnology.

[7]  M. Guizar‐Sicairos,et al.  Experimental observation of vortex rings in a bulk magnet , 2020, Nature Physics.

[8]  A. Fernández-Pacheco,et al.  Writing 3D Nanomagnets Using Focused Electron Beams , 2020, Materials.

[9]  Y. Gaididei,et al.  Nonlocal chiral symmetry breaking in curvilinear magnetic shells , 2020 .

[10]  Giovanni Di Fratta Micromagnetics of curved thin films , 2020 .

[11]  M. Avila,et al.  Magnetohydrodynamics , 2017 .

[12]  V. Kravchuk,et al.  Effect of curvature on the eigenstates of magnetic skyrmions , 2020, 2004.04549.

[13]  P. Fischer,et al.  Launching a new dimension with 3D magnetic nanostructures , 2020, APL Materials.

[14]  J. C. Loudon,et al.  Real-space imaging of confined magnetic skyrmion tubes , 2019, Nature Communications.

[15]  Y. Tokura,et al.  Propagation dynamics of spin excitations along skyrmion strings , 2019, Nature Communications.

[16]  J. van den Brink,et al.  Solitary wave excitations of skyrmion strings in chiral magnets , 2019, Physical Review B.

[17]  N. Vidal-Silva,et al.  Winding number selection on merons by Gaussian curvature’s sign , 2019, Scientific Reports.

[18]  I. Mönch,et al.  Experimental Observation of Exchange-Driven Chiral Effects in Curvilinear Magnetism. , 2019, Physical review letters.

[19]  Huanhuan Yang,et al.  Current-induced skyrmion motion on magnetic nanotubes , 2018, Journal of Physics D: Applied Physics.

[20]  M. Ryutova,et al.  Magnetic Solitons , 2018, Journal of Experimental and Theoretical Physics.

[21]  Y. Gaididei,et al.  Geometry-induced motion of magnetic domain walls in curved nanostripes , 2018, Physical Review B.

[22]  J. van den Brink,et al.  Multiplet of Skyrmion States on a Curvilinear Defect: Reconfigurable Skyrmion Lattices. , 2018, Physical review letters.

[23]  Y. Gaididei,et al.  Mesoscale Dzyaloshinskii-Moriya interaction: geometrical tailoring of the magnetochirality , 2018, Scientific Reports.

[24]  A. Fert,et al.  Advances in the Physics of Magnetic Skyrmions and Perspective for Technology , 2017, 1712.07236.

[25]  A. Fert,et al.  Room-Temperature Current-Induced Generation and Motion of sub-100 nm Skyrmions. , 2017, Nano letters.

[26]  M. Morini,et al.  Engineering Curvature-Induced Anisotropy in Thin Ferromagnetic Films. , 2016, Physical review letters.

[27]  Ming Yan,et al.  Curvature-Induced Asymmetric Spin-Wave Dispersion. , 2016, Physical review letters.

[28]  J. Brink,et al.  Topologically stable magnetization states on a spherical shell: Curvature-stabilized skyrmions , 2016, 1606.02598.

[29]  Benjamin Krueger,et al.  Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.

[30]  Florian Nadel,et al.  Magnetic Domains The Analysis Of Magnetic Microstructures , 2016 .

[31]  P. Fischer,et al.  Magnetic coupling of vortices in a two-dimensional lattice , 2015, Nanotechnology.

[32]  Y. Gaididei,et al.  Curvature-induced domain wall pinning , 2015, 1505.07867.

[33]  Stuart Parkin,et al.  Memory on the racetrack. , 2015, Nature nanotechnology.

[34]  Kang L. Wang,et al.  Blowing magnetic skyrmion bubbles , 2015, Science.

[35]  A. Fert,et al.  Anatomy of Dzyaloshinskii-Moriya Interaction at Co/Pt Interfaces. , 2015, Physical review letters.

[36]  F. García-Sánchez,et al.  The design and verification of MuMax3 , 2014, 1406.7635.

[37]  Y. Gaididei,et al.  Curvature effects in thin magnetic shells. , 2014, Physical review letters.

[38]  D. Mitin,et al.  Single vortex core recording in a magnetic vortex lattice , 2014 .

[39]  D Wolf,et al.  Weighted simultaneous iterative reconstruction technique for single-axis tomography. , 2014, Ultramicroscopy.

[40]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[41]  R. Hertel CURVATURE-INDUCED MAGNETOCHIRALITY , 2013 .

[42]  F. Börrnert,et al.  Electron holography for fields in solids: problems and progress. , 2013, Ultramicroscopy.

[43]  C. Pfleiderer,et al.  Unwinding of a Skyrmion Lattice by Magnetic Monopoles , 2013, Science.

[44]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[45]  G. Beach,et al.  Current-driven dynamics of chiral ferromagnetic domain walls. , 2013, Nature materials.

[46]  A. Fert,et al.  Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films , 2012, 1211.5970.

[47]  O. Schmidt,et al.  Equilibrium magnetic states in individual hemispherical permalloy caps , 2012 .

[48]  Denys Makarov,et al.  Magnetically capped rolled-up nanomembranes. , 2012, Nano letters.

[49]  O. Schmidt,et al.  Out-of-surface vortices in spherical shells , 2012, 1202.6002.

[50]  F. García-Sánchez,et al.  Fast domain wall dynamics in magnetic nanotubes: Suppression of Walker breakdown and Cherenkov-like spin wave emission , 2011 .

[51]  F. García-Sánchez,et al.  Depinning of Transverse Domain Walls from Notches in Magnetostatically Coupled Nanostrips , 2011 .

[52]  A. Arrott,et al.  Large amplitude oscillations (switching) of bi-stable vortex structures in zero field , 2010 .

[53]  Sergei Petrovich Novikov,et al.  Modern Geometry-Methods and Applications(Part II. The Geometry and Topology of Manifolds) , 2010 .

[54]  Yuri Gaididei,et al.  Magnetic Vortex Dynamics Induced by an Electrical Current , 2010 .

[55]  A. N. Bogdanov,et al.  Theory of vortex states in magnetic nanodisks with induced Dzyaloshinskii-Moriya interactions , 2009, 0906.5552.

[56]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[57]  C. Dietrich,et al.  Influence of perpendicular magnetic fields on the domain structure of permalloy microstructures grown on thin membranes , 2008 .

[58]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[59]  A. Arrott,et al.  Formation and transformation of vortex structures in soft ferromagnetic ellipsoids , 2008 .

[60]  Riccardo Hertel,et al.  Guided Spin Waves , 2007 .

[61]  Y. Gaididei,et al.  Controlled vortex core switching in a magnetic nanodisk by a rotating field , 2007, 0705.2046.

[62]  S. Heinze,et al.  Chiral magnetic order at surfaces driven by inversion asymmetry , 2007, Nature.

[63]  R. Hertel,et al.  Exchange explosions: Magnetization dynamics during vortex-antivortex annihilation. , 2006, Physical review letters.

[64]  Y. Tokura,et al.  Real-Space Observation of Helical Spin Order , 2006, Science.

[65]  B. Ivanov,et al.  Dynamics of topological solitons in two-dimensional ferromagnets , 2005, cond-mat/0505542.

[66]  A. Locatelli,et al.  Three-dimensional magnetic-flux-closure patterns in mesoscopic Fe islands , 2005, cond-mat/0507119.

[67]  L. Helmuth,et al.  Problems and Progress , 2003, Science.

[68]  Michael Lehmann,et al.  Tutorial on Off-Axis Electron Holography , 2002, Microscopy and Microanalysis.

[69]  Werner Scholz,et al.  Transition from single-domain to vortex state in soft magnetic cylindrical nanodots , 2002 .

[70]  Josef Zweck,et al.  Lorentz microscopy of circular ferromagnetic permalloy nanodisks , 2000 .

[71]  A. Verkleij,et al.  Three-Dimensional Transmission Electron Microscopy: A Novel Imaging and Characterization Technique with Nanometer Scale Resolution for Materials Science , 2000 .

[72]  Jörg Raabe,et al.  Magnetization pattern of ferromagnetic nanodisks , 2000 .

[73]  Ono,et al.  Magnetic vortex core observation in circular dots of permalloy , 2000, Science.

[74]  R. Cowburn,et al.  Single-Domain Circular Nanomagnets , 1999 .

[75]  Nigel R. Cooper,et al.  Propagating Magnetic Vortex Rings in Ferromagnets , 1999 .

[76]  D. Thouless Topological Quantum Numbers in Nonrelativistic Physics , 1998 .

[77]  C. Lacroix,et al.  Dzyaloshinsky–Moriya interactions induced by symmetry breaking at a surface , 1998 .

[78]  S. Komineas,et al.  Topology and dynamics in ferromagnetic media , 1995, cond-mat/9511126.

[79]  N. Papanicolaou,et al.  Dynamics of magnetic vortices , 1991 .

[80]  A. N. Bogdanov,et al.  Thermodynamically stable "vortices" in magnetically ordered crystals. The mixed state of magnets , 1989 .

[81]  B. Dubrovin,et al.  Modern geometry--methods and applications , 1984 .

[82]  N. D. Mermin,et al.  The topological theory of defects in ordered media , 1979 .

[83]  J. Slonczewski,et al.  Magnetic domain walls in bubble materials , 1979 .

[84]  T. Moriya New Mechanism of Anisotropic Superexchange Interaction , 1960 .

[85]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .