Dissipative solitons and Complex currents in Active Lattices

We first summarize features of free, forced and stochastic harmonic oscillations and, following an idea first proposed by Lord Rayleigh in 1883, we discuss the possibility of maintaining them in the presence of dissipation. We describe how phonons appear in a harmonic (linear) lattice and then use the Toda exponential interaction to illustrate solitonic excitations (cnoidal waves) in a one-dimensional nonlinear lattice. We discuss properties such as specific heat (at constant length/volume) and the dynamic structure factor, both over a broad range of temperature values. By considering the interacting Toda particles to be Brownian units capable of pumping energy from a surrounding heat bath taken as a reservoir we show that solitons can be excited and sustained in the presence of dissipation. Thus the original Toda lattice is converted into an active lattice using Lord Rayleigh's method. Finally, by endowing the Toda–Brownian particles with electric charge (i.e. making them positive ions) and adding free electrons to the system we study the electric currents that arise. We show that, following instability of the base linear Ohm(Drude) conduction state, the active electric Toda lattice is able to maintain a form of high-T supercurrent, whose characteristics we then discuss.

[1]  A. Scott,et al.  The soliton: A new concept in applied science , 1973 .

[2]  Werner Ebeling,et al.  Thermodynamics and phase transitions in dissipative and active Morse chains , 2005 .

[3]  McGuire,et al.  Critical currents in , 1988, Physical review letters.

[4]  Morikazu Toda,et al.  Solitons and Heat Conduction , 1979 .

[5]  Manuel G. Velarde,et al.  The harmonic oscillator approach to sustained gravity-capillary (Laplace) waves at liquid interfaces , 1988 .

[6]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[7]  Vladimir I. Nekorkin,et al.  SOLITARY WAVES, SOLITON BOUND STATES AND CHAOS IN A DISSIPATIVE KORTEWEG-DE VRIES EQUATION , 1994 .

[8]  D. Haar,et al.  Statistical Physics , 1971, Nature.

[9]  Rayleigh Lord,et al.  XXXIII. On maintained vibrations , 1883 .

[10]  Philippe Choquard,et al.  The anharmonic crystal , 1967 .

[11]  Werner Ebeling,et al.  On soliton-Mediated Fast Electric conduction in a Nonlinear Lattice with Morse Interactions , 2006, Int. J. Bifurc. Chaos.

[12]  Vladimir I. Nekorkin,et al.  Synergetic Phenomena in Active Lattices , 2002 .

[13]  T. D. Lee,et al.  Possible relevance of soliton solutions to superconductivity , 1987, Nature.

[14]  W. Visscher,et al.  Lattice Thermal Conductivity in Disordered Harmonic and Anharmonic Crystal Models , 1967 .

[15]  C. Christov,et al.  Well-posed Boussinesq paradigm with purely spatial higher-order derivatives. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Zhao Cheng-da,et al.  Solitons on conducting polymers , 2005 .

[17]  Jörn Dunkel,et al.  Phase behavior and collective excitations of the Morse ring chain , 2003 .

[18]  F. Schweitzer Brownian Agents and Active Particles , 2003, Springer Series in Synergetics.

[19]  Michel Remoissenet,et al.  Waves called solitons , 1994 .

[20]  Vladimir I. Nekorkin,et al.  Synergetic phenomena in active lattices : patterns, waves, solitons, chaos , 2002 .

[21]  Alwyn C. Scott,et al.  Nonlinear Science: Emergence and Dynamics of Coherent Structures , 1999 .

[22]  Frank Schweitzer,et al.  Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences , 2003 .

[23]  V. A. Makarov,et al.  Dissipative Toda-Rayleigh lattice and its oscillatory modes. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  S. Ulam,et al.  Studies of nonlinear problems i , 1955 .

[25]  Manuel G. Velarde,et al.  Solitons as dissipative structures , 2004 .

[26]  Chu,et al.  Korteweg-de Vries soliton excitation in Bénard-Marangoni convection. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[27]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[28]  Werner Ebeling,et al.  On the Possibility of Electric conduction Mediated by dissipative solitons , 2005, Int. J. Bifurc. Chaos.

[29]  戸田 盛和 Theory of nonlinear lattices , 1981 .

[30]  Alwyn C. Scott,et al.  Davydov's soliton revisited : self-trapping of vibrational energy in protein , 1990 .

[31]  Manuel G. Velarde,et al.  Effect of anharmonicity on charge transport in hydrogen-bonded systems , 2006 .

[32]  P. Gray,et al.  Atomic Dynamics in Liquids , 1977 .

[33]  Werner Ebeling,et al.  Distribution functions and excitation spectra of Toda systems at intermediate temperatures , 2000 .

[34]  E. Ben Jacob,et al.  Solitary Phenomena in Finite Dissipative Discrete Systems , 1978 .

[35]  C. Christov,et al.  Dissipative solitons , 1995 .

[36]  Werner Ebeling,et al.  Statistical Thermodynamics and Stochastic Theory of Nonequilibrium Systems , 2005 .

[37]  Alexander A. Nepomnyashchy,et al.  Interfacial Phenomena and Convection , 2001 .

[38]  Alwyn C. Scott,et al.  Davydov's soliton revisited , 1991 .

[39]  A. R. Bishop,et al.  Solitons in condensed matter: A paradigm , 1980 .

[40]  M. Velarde,et al.  Dissipative hydrodynamic oscillators , 1989 .

[41]  Chi,et al.  Direct measurement of the superconducting properties of single grain boundaries in Y1Ba2Cu3O7- delta. , 1988, Physical review letters.

[42]  Savin,et al.  Charge transport by solitons in hydrogen-bonded materials. , 1991, Physical review letters.

[43]  Manuel G. Velarde,et al.  A prototype Helmholtz–Thompson nonlinear oscillator , 1992 .

[44]  Alan J. Heeger,et al.  Solitons in conducting polymers , 1988 .

[45]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[46]  Manuel G. Velarde,et al.  Evolution and interactions of solitary waves (solitons) in nonlinear dissipative systems , 1994 .

[47]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[48]  Yu. L. Klimontovich,et al.  Nonlinear Brownian motion , 1994 .

[49]  Werner Ebeling,et al.  Soliton-like Waves on dissipative Toda Lattices , 2000, Int. J. Bifurc. Chaos.

[50]  F. Schweitzer,et al.  Brownian particles far from equilibrium , 2000 .

[51]  D. Thouless Many Body Problem , 1968, Nature.

[52]  A. Davydov,et al.  Solitons in molecular systems , 1979 .

[53]  Werner Ebeling,et al.  Nonlinear Dynamics and Fluctuations of Dissipative Toda Chains , 2000 .

[54]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[55]  Morikazu Toda,et al.  The classical specific heat of the exponential lattice , 1983 .

[56]  V. A. Makarov,et al.  Mode transitions and wave propagation in a driven-dissipative Toda-Rayleigh ring. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  David Pines,et al.  The Many-body Problem , 1971 .