Development and application of a real-time monitoring and feedback system for deep inspiration breath hold based on external marker tracking.

Respiration can cause tumor movements in thoracic regions of up to 3 cm. To minimize motion effects several approaches, such as gating and deep inspiration breath hold (DIBH), are still under development. The goal of our study was to develop and evaluate a noninvasive system for gated DIBH (GDIBH) based on external markers. DIBH monitoring was based on an infrared tracking system and an in-house-developed software. The in-house software provided the breathing curve in real time and was used as on-line information for a prototype of a feedback device. Reproducibility and stability of the breath holds were evaluated without and with feedback. Thirty-five patients undergoing stereotactic body radiotherapy (SBRT) performed DIBH maneuvers after each treatment. For 16 patients dynamic imaging sequences on a multislice CT were used to determine the correlation between tumor and external markers. The relative reproducibility of DIBH maneuvers was improved with the feedback device (74.5% +/- 17.1% without versus 93.0% +/- 4.4% with feedback). The correlation between tumor and marker was good (Pearson correlation coefficient 0.83 +/- 0.17). The regression slopes showed great intersubject variability but on average the internal margin in a DIBH treatment situation could be theoretically reduced by 3 mm with the feedback device. DIBH monitoring could be realized in a noninvasive manner through external marker tracking. We conclude that reduction of internal margins can be achieved with a feedback system but should be performed with great care due to the individual behavior of target motion.

[1]  J Hanson,et al.  Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration. , 2001, International journal of radiation oncology, biology, physics.

[2]  R. Emery,et al.  Clinical experience using respiratory gated radiation therapy: comparison of free-breathing and breath-hold techniques. , 2004, International journal of radiation oncology, biology, physics.

[3]  C. Ling,et al.  Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer. , 2000, International journal of radiation oncology, biology, physics.

[4]  Stine Korreman,et al.  Breathing adapted radiotherapy of breast cancer: reduction of cardiac and pulmonary doses using voluntary inspiration breath-hold. , 2004, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[5]  B. Murray,et al.  Setup reproducibility in radiation therapy for lung cancer: a comparison between T-bar and expanded foam immobilization devices. , 1999, International journal of radiation oncology, biology, physics.

[6]  T Mizowaki,et al.  The effectiveness of an immobilization device in conformal radiotherapy for lung tumor: reduction of respiratory tumor movement and evaluation of the daily setup accuracy. , 2001, International journal of radiation oncology, biology, physics.

[7]  Dirk Verellen,et al.  Initial clinical experience with infrared-reflecting skin markers in the positioning of patients treated by conformal radiotherapy for prostate cancer. , 2002, International journal of radiation oncology, biology, physics.

[8]  E. Yorke,et al.  Deep inspiration breath hold and respiratory gating strategies for reducing organ motion in radiation treatment. , 2004, Seminars in radiation oncology.

[9]  H. Kubo,et al.  Respiration gated radiotherapy treatment: a technical study. , 1996, Physics in medicine and biology.

[10]  U Oppitz,et al.  Stereotactic radiotherapy of extracranial targets: CT-simulation and accuracy of treatment in the stereotactic body frame. , 2000, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[11]  Harry Keller,et al.  Application of the spirometer in respiratory gated radiotherapy. , 2003, Medical physics.

[12]  Y. Ung,et al.  Reproducibility of lung tumor position and reduction of lung mass within the planning target volume using active breathing control (ABC). , 2003, International journal of radiation oncology, biology, physics.

[13]  G J Kutcher,et al.  Deep inspiration breath-hold technique for lung tumors: the potential value of target immobilization and reduced lung density in dose escalation. , 1999, International journal of radiation oncology, biology, physics.

[14]  C C Ling,et al.  The deep inspiration breath-hold technique in the treatment of inoperable non-small-cell lung cancer. , 2000, International journal of radiation oncology, biology, physics.

[15]  M. V. van Herk,et al.  Physical aspects of a real-time tumor-tracking system for gated radiotherapy. , 2000, International journal of radiation oncology, biology, physics.

[16]  B. Murray,et al.  Held-breath self-gating technique for radiotherapy of non-small-cell lung cancer: a feasibility study. , 2001, International journal of radiation oncology, biology, physics.

[17]  Kurt Baier,et al.  Dose-response in stereotactic irradiation of lung tumors. , 2005, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[18]  Michael B Sharpe,et al.  Significant reductions in heart and lung doses using deep inspiration breath hold with active breathing control and intensity-modulated radiation therapy for patients treated with locoregional breast irradiation. , 2003, International journal of radiation oncology, biology, physics.

[19]  Tomoki Kimura,et al.  Reproducibility of organ position using voluntary breath-hold method with spirometer for extracranial stereotactic radiotherapy. , 2003, International journal of radiation oncology, biology, physics.

[20]  Gikas S. Mageras,et al.  Fluoroscopic evaluation of diaphragmatic motion reduction with a respiratory gated radiotherapy system , 2001, Journal of applied clinical medical physics.

[21]  Richard Pötter,et al.  Automatic real-time surveillance of eye position and gating for stereotactic radiotherapy of uveal melanoma. , 2004, Medical physics.

[22]  Hiroshi Onishi,et al.  CT evaluation of patient deep inspiration self-breath-holding: how precisely can patients reproduce the tumor position in the absence of respiratory monitoring devices? , 2003, Medical physics.

[23]  John W Wong,et al.  Validation of active breathing control in patients with non-small-cell lung cancer to be treated with CHARTWEL. , 2003, International journal of radiation oncology, biology, physics.

[24]  F Lohr,et al.  Extracranial stereotactic radiation therapy: set-up accuracy of patients treated for liver metastases. , 2000, International journal of radiation oncology, biology, physics.

[25]  Michael Flentje,et al.  Stereotactic radiotherapy for primary lung cancer and pulmonary metastases: a noninvasive treatment approach in medically inoperable patients. , 2004, International journal of radiation oncology, biology, physics.

[26]  C. Ling,et al.  Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer. , 2002, Medical physics.

[27]  J. Wong,et al.  The use of active breathing control (ABC) to reduce margin for breathing motion. , 1999, International journal of radiation oncology, biology, physics.

[28]  M. V. van Herk,et al.  Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. , 2002, International journal of radiation oncology, biology, physics.

[29]  George Starkschall,et al.  Evaluation of internal lung motion for respiratory-gated radiotherapy using MRI: Part I--correlating internal lung motion with skin fiducial motion. , 2004, International journal of radiation oncology, biology, physics.

[30]  Y. Tsunashima,et al.  Correlation between the respiratory waveform measured using a respiratory sensor and 3D tumor motion in gated radiotherapy. , 2004, International journal of radiation oncology, biology, physics.

[31]  George Starkschall,et al.  Evaluation of internal lung motion for respiratory-gated radiotherapy using MRI: Part II-margin reduction of internal target volume. , 2004, International journal of radiation oncology, biology, physics.

[32]  H. Mostafavi,et al.  Breathing-synchronized radiotherapy program at the University of California Davis Cancer Center. , 2000, Medical physics.

[33]  R K Ten Haken,et al.  The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy. , 2001, International journal of radiation oncology, biology, physics.

[34]  I. Lax,et al.  Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. , 1994, Acta oncologica.

[35]  Hans-Peter Meinzer,et al.  Influence of different breathing maneuvers on internal and external organ motion: use of fiducial markers in dynamic MRI. , 2005, International journal of radiation oncology, biology, physics.

[36]  R K Ten Haken,et al.  Dose escalation in non-small-cell lung cancer using three-dimensional conformal radiation therapy: update of a phase I trial. , 2001, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[37]  H Shirato,et al.  Detection of lung tumor movement in real-time tumor-tracking radiotherapy. , 2001, International journal of radiation oncology, biology, physics.