Hydrogen order in hydrides of Laves phases

Abstract Many Laves phases AM2 takes up hydrogen to form interstitial hydrides in which hydrogen atoms partially occupy A2M2, AM3, and/or M4 tetrahedral interstices. They often exhibit temperature-driven order-disorder phase transitions, which are triggered by repulsion of hydrogen atoms occupying neighboring tetrahedral interstices. Because of the phase widths with respect to hydrogen a complete ordering, i.e., full occupation of all hydrogen positions is usually not achieved. Order-disorder transitions in Laves phase hydrides are thus phase transitions between crystal structures with different degrees of hydrogen order. Comparing the crystal structures of ordered and disordered phases reveals close symmetry relationships in all known cases. This allows new insights into the crystal chemical description of such phases and into the nature of the phase transitions. Structural relationships for over 40 hydrides of cubic and hexagonal Laves phases ZrV2, HfV2, ZrCr2, ZrCo2, LaMg2, CeMg2, PrMg2, NdMg2, SmMg2, YMn2, ErMn2, TmMn2, LuMn2, Lu0.4Y0.6Mn2 YFe2, and ErFe2 are concisely described in terms of crystallographic group-subgroup schemes (Bärnighausen trees) covering 32 different crystal structure types, 26 of which represent hydrogen-ordered crystal structures.

[1]  R. Pöttgen,et al.  Group-subgroup schemes for MoNi4, Nb4N5, KxFe2−ySe2, Nd10Au3As8O10 and CsInCl3: i5 superstructures of I 4/m allowing atom, charge or vacancy ordering , 2020 .

[2]  O. Janka,et al.  Hydrogenation Properties of Laves Phases LnMg2 (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Ho, Er, Tm, Yb). , 2017, Inorganic chemistry.

[3]  A. Hoser,et al.  Interplay between crystal and magnetic structures in YFe 2 (H α D 1-α ) 4.2 compounds studied by neutron diffraction , 2017 .

[4]  R. Pöttgen Coloring, Distortions, and Puckering in Selected Intermetallic Structures from the Perspective of Group‐Subgroup Relations , 2014 .

[5]  A. Budziak,et al.  Influence of hydrogen on structural and magnetic properties of the hexagonal Laves phase HoMn2 , 2012 .

[6]  U. Müller Symmetriebeziehungen zwischen verwandten Kristallstrukturen , 2012 .

[7]  S. Matar Intermetallic hydrides: A review with ab initio aspects , 2010 .

[8]  A. Simon,et al.  Topologie der Kristallstruktur und chemische Bindung in Laves-Phasen , 2010 .

[9]  A. F. Gubkin,et al.  Crystal structure of ErFe2D3.1 and ErFe2H3.1 at 450 K , 2010 .

[10]  H. Kohlmann Solid‐State Structures and Properties of Europium and Samarium Hydrides , 2010 .

[11]  Chick C. Wilson,et al.  Structural isotope effects in metal hydrides and deuterides. , 2010, Physical chemistry chemical physics : PCCP.

[12]  Chick C. Wilson,et al.  Crystallography of hydrogen-containing compounds: realizing the potential of neutron powder diffraction. , 2009, Chemical communications.

[13]  H. Kohlmann Structural relationships in complex hydrides of the late transition metals , 2009 .

[14]  K. Yvon,et al.  Neutron Powder Diffraction with natSm: Crystal Structures and Magnetism of a Binary Samarium Deuteride and a Ternary Samarium Magnesium Deuteride. , 2007 .

[15]  R. Hempelmann,et al.  Hydrogen Motion in Metals , 2007 .

[16]  K. Yvon,et al.  Neutron powder diffraction with (nat)Sm: crystal structures and magnetism of a binary samarium deuteride and a ternary samarium magnesium deuteride. , 2007, Chemistry.

[17]  R. Hempelmann,et al.  Effects of hydrogen ordering on the vibrational spectra of H(D) in HfV 2H4−yDy , 2006 .

[18]  Yun-tao Liu,et al.  Neutron diffraction study of the deuterides of Zr0.9Ti0.1MnCr Laves phase alloy , 2006 .

[19]  G. André,et al.  Novel Superstructure in the High‐Concentrated Hydrogen Solid Solutions ZrV2Dx>4. , 2005 .

[20]  G. André,et al.  Novel superstructure in the high-concentrated hydrogen solid solutions ZrV2Dx>4 , 2005 .

[21]  V. Paul-Boncour,et al.  Structural and magnetic properties of RFe2Dx deuterides (R = Zr, Y and x ≥ 3.5) studied by means of neutron diffraction and 57Fe Mössbauer spectroscopy , 2005 .

[22]  W. Kantlehner,et al.  With Metal Hydrides , 2005 .

[23]  U. Müller Kristallographische Gruppe‐Untergruppe‐Beziehungen und ihre Anwendung in der Kristallchemie , 2004 .

[24]  M. Palm,et al.  Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability , 2004 .

[25]  G. André,et al.  The ZrV2D6 crystal structure , 2003 .

[26]  V. Paul-Boncour,et al.  Neutron diffraction study of ZrM2Dx deuterides (M=Fe, Co) , 2003 .

[27]  G. André,et al.  Structural and magnetic properties of ErFe2D5 studied by neutron diffraction and Mössbauer spectroscopy , 2003 .

[28]  G. André,et al.  Hydrogen redistribution in the solid solutions ZrV2Dx, 2.2≤x≤2.7. II. Structure of the intermediate phase: 'Lattice liquid crystal'. A neutron-diffraction study , 2003 .

[29]  Gerbrand Ceder,et al.  First-principles study of the stability and electronic structure of metal hydrides , 2002 .

[30]  E. Suard,et al.  Interplay of magnetic and hydrogen ordering in the hexagonal Laves hydrides , 2002 .

[31]  R. Černý,et al.  Mg6Ir2H11, a new metal hydride containing saddle-like [IrH4]5− and square-pyramidal [IrH5]4− hydrido complexes , 2002 .

[32]  M. Gupta,et al.  Hydrogen-induced modifications to the electronic structure of intermetallic compounds , 2002 .

[33]  R. Hempelmann,et al.  Neutron spectroscopic evidence of a low-temperature phase transition in C15-type ZrCr2Hx (x=0.2 and 0.45) , 2001 .

[34]  F. Fauth,et al.  Low-temperature deuterium ordering in the cubic Laves phase derivative α-ZrCr2D0.66 , 2001 .

[35]  K. Yvon,et al.  Europium–Hydrogen Bond Distances in Saline Metal Hydrides by Neutron Diffraction , 2001, CHIMIA.

[36]  Kuochih Hong The development of hydrogen storage alloys and the progress of nickel hydride batteries , 2001 .

[37]  R. Pöttgen,et al.  AlB2-related intermetallic compounds – a comprehensive view based on group-subgroup relations , 2001 .

[38]  K. Yvon,et al.  Revision of the Low-Temperature Structures of Rhombohedral ZrCr2Dx (x≈3.8), and Monoclinic ZrV2Dx (1.1 < x < 2.3) and HfV2Dx (x≈1.9). , 2000 .

[39]  M. Latroche,et al.  Structural and Magnetic Properties of Low D Content YMn2 Deuteride , 2000 .

[40]  K. Yvon,et al.  Revision of the low-temperature structures of rhombohedral ZrCr2Dx (x∼3.8), and monoclinic ZrV2Dx (1.1 , 2000 .

[41]  E. Suard,et al.  Order-disorder phase transition in the deuterated hexagonal (C14-type) laves phase ZrCr2D3,8 , 2000 .

[42]  D. Ross,et al.  An empirical potential for interstitial hydrogen in some C-15 Laves phase compounds from IINS measurements , 1999 .

[43]  E. Suard,et al.  Evolution of hydrogen superstructure with k=(1/2 1/2 1/2) in ZrV2D2+δ, -0.8 , 1999 .

[44]  F. Fauth,et al.  Hydrogen Order in Monoclinic ZrCr2H3.8. , 1999 .

[45]  P. Fischer,et al.  Neutron diffraction study of the location of deuterium in the deuterium-stabilized HfTi2D4 phase , 1999 .

[46]  M. Latroche,et al.  Elaboration, Structures, and Phase Transitions for YFe2DxCompounds (x=1.3, 1.75, 1.9, 2.6) Studied by Neutron Diffraction , 1999 .

[47]  M. Latroche,et al.  Crystallographic Study of YFe2D3.5by X-Ray and Neutron Powder Diffraction , 1997 .

[48]  E. Suard,et al.  Interplay of magnetic and hydrogen orders in the laves hydride YMn{sub 2}H{sub 4.3} , 1997 .

[49]  K. Yvon,et al.  Synthesis and crystal structure of tetragonal LnMg2H7 (Ln=La, Ce), two Laves phase hydride derivatives having ordered hydrogen distribution , 1997 .

[50]  A. Karkin,et al.  Hydrogen-induced anomalies in the heat capacity of C15-type , 1997 .

[51]  M. Latroche,et al.  X-ray diffraction and extended X-ray absorption fine-structure study of RMn2 hydrides (R = Y, Gd or Dy) , 1996 .

[52]  T. Masumoto,et al.  Hydrogen-induced amorphization of intermetallics , 1995 .

[53]  W. H. Baur,et al.  The perils of Cc : comparing the frequencies of falsely assigned space groups with their general population , 1992 .

[54]  R. Nesper Chemische Bindungen ‐ intermetallische Verbindungen , 1991 .

[55]  G. Borzone,et al.  The samarium-magnesium system: A phase diagram , 1989 .

[56]  P. Fischer,et al.  Crystal and magnetic structures of ternary metal hydrides: A comprehensive review , 1988 .

[57]  K. Yvon,et al.  Structural Studies of the Hydrogen Storage Material Mg2NiH4. Part 2. Monoclinic Low-Temperature Structure. , 1987 .

[58]  T. Masumoto,et al.  Hydrogen induced amorphization in RNi2 laves phases , 1987 .

[59]  K. Yvon,et al.  Structural studies of the hydrogen storage material magnesium nickel hydride (Mg2NiH4). 2. Monoclinic low-temperature structure , 1986 .

[60]  D. Northwood,et al.  Storing Hydrogen in AB2 Laves-Type Compounds* , 1986 .

[61]  K. N. Semenenko,et al.  Physicochemistry and crystallochemistry of intermetallic hydrides containing rare earths and transition metals , 1985 .

[62]  W. Bronger,et al.  Synthese und Struktur von Na2PtH4, einem ternären Hydrid mit quadratisch planaren PtH42−-Baugruppen† , 1984 .

[63]  V. Somenkov,et al.  Lattice structure and phase transitions of hydrogen in intermetallic compounds , 1984 .

[64]  D. Westlake Hydrogen sites in A2BHy (A = Ca, Sr, Eu; B = Ir, Rh, Ru) , 1984 .

[65]  K. Yvon,et al.  Structural studies of the hydrogen storage material Mg2NiH4. 1. Cubic high-temperature structure , 1981 .

[66]  P. Fischer,et al.  The deuterium site occupation in ZrV2Dx as a function of the deuterium concentration , 1980 .

[67]  P. Fischer,et al.  The distribution of the deuterium atoms in the deuterated cubic laves-phase ZrV2D4·5 , 1979 .

[68]  D. Shoemaker,et al.  Concerning atomic sites and capacities for hydrogen absorption in the AB2 Friauf-Laves phases , 1979 .

[69]  D. Shaltiel Hydride properties of AB2 laves phase compounds , 1978 .

[70]  D. Davidov,et al.  Hydrogen absorption and desorption properties of AB2 laves-phase pseudobinary compounds , 1977 .

[71]  A. Miedema,et al.  Which intermetallic compounds of transition metals form stable hydrides , 1976 .

[72]  V. A. Perminov Structural characteristics and crystal chemistry of binary magnides , 1967 .

[73]  F. Laves,et al.  Über den Einfluß geometrischer Faktoren auf die stöchiometrische Formel metallischer Verbindungen, gezeigt an der Kristallstruktur des KNa2 , 1942 .