Graphene-based optically transparent electrodes for spectroelectrochemistry in the UV-Vis region.

[1]  Harry B. Gray,et al.  Electronic structure of metallocenes , 1971 .

[2]  K. Müllen,et al.  Transparent, conductive graphene electrodes for dye-sensitized solar cells. , 2008, Nano letters.

[3]  Theo Siegrist,et al.  Zinc‐indium‐oxide: A high conductivity transparent conducting oxide , 1995 .

[4]  K. Novoselov,et al.  Graphene-based liquid crystal device. , 2008, Nano letters (Print).

[5]  Ying Wang,et al.  Preparation, Structure, and Electrochemical Properties of Reduced Graphene Sheet Films , 2009 .

[6]  Milo S. P. Shaffer,et al.  Electrophoretic deposition of carbon nanotubes , 2006 .

[7]  Dorota Temple,et al.  Highly flexible transparent electrodes for organic light-emitting diode-based displays , 2004 .

[8]  D. Ugarte,et al.  Aligned Carbon Nanotube Films: Production and Optical and Electronic Properties , 1995, Science.

[9]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[10]  S. Petralia,et al.  Optically Transparent, Ultrathin Pt Films as Versatile Metal Substrates for Molecular Optoelectronics , 2006 .

[11]  G. Gritzner,et al.  Recommendations on reporting electrode potentials in nonaqueous solvents (Recommendations 1983) , 1984 .

[12]  Klaus Müllen,et al.  Nanographenes as active components of single-molecule electronics and how a scanning tunneling microscope puts them to work. , 2008, Accounts of chemical research.

[13]  R. McCreery,et al.  Electroanalytical performance of carbon films with near-atomic flatness. , 2001, Analytical chemistry.

[14]  Ricardo Izquierdo,et al.  Carbon nanotube sheets as electrodes in organic light-emitting diodes. , 2006 .

[15]  Michael Grätzel,et al.  Direct electrochemistry and nitric oxide interaction of heme proteins adsorbed on nanocrystalline tin oxide electrodes , 2003 .

[16]  F. Würthner,et al.  Self-assembly of ferrocene-functionalized perylene bisimide bridging ligands with PtII corner to electrochemically active molecular squares. , 2003, Journal of the American Chemical Society.

[17]  A. Pugžlys,et al.  Modification of the nanoscale structure of the J-aggregate of a sulfonate-substituted amphiphilic carbocyanine dye through incorporation of surface-active additives. , 2007, The journal of physical chemistry. B.

[18]  J. Lenhard,et al.  Dimerization reactions of cyanine radical dications , 1990 .

[19]  J. F. Stoddart,et al.  A redox-driven multicomponent molecular shuttle. , 2007, Journal of the American Chemical Society.

[20]  Klaus Müllen,et al.  Transparent carbon films as electrodes in organic solar cells. , 2008, Angewandte Chemie.

[21]  N. Koch,et al.  Transparent, highly conductive graphene electrodes from acetylene-assisted thermolysis of graphite oxide sheets and nanographene molecules , 2009, Nanotechnology.

[22]  Jasper Knoester,et al.  Uniform exciton fluorescence from individual molecular nanotubes immobilized on solid substrates. , 2009, Nature nanotechnology.

[23]  Zhenan Bao,et al.  Organic solar cells with solution-processed graphene transparent electrodes , 2008 .

[24]  P. R. Hania,et al.  Structure, Spectroscopy, and Microscopic Model of Tubular Carbocyanine Dye Aggregates , 2004 .

[25]  Liangbing Hu,et al.  Organic solar cells with carbon nanotube network electrodes , 2006 .

[26]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[27]  J. Horwitz,et al.  Transparent conducting Zr-doped In2O3 thin films for organic light-emitting diodes , 2001 .

[28]  Dirk M. Guldi,et al.  Carbon nanotubes as integrative materials for organic photovoltaic devices , 2008 .

[29]  Marc Madou,et al.  Photoresist‐Derived Carbon for Microelectromechanical Systems and Electrochemical Applications , 2000 .

[30]  R. McCreery,et al.  Ultraviolet—Visible Spectroelectrochemistry of Chemisorbed Molecular Layers on Optically Transparent Carbon Electrodes , 2007, Applied spectroscopy.

[31]  C. Berger,et al.  Highly ordered graphene for two dimensional electronics , 2006 .

[32]  Garry Rumbles,et al.  Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode , 2006 .

[33]  N. Koch,et al.  Electronic and structural properties of graphene-based transparent and conductive thin film electrodes , 2009 .

[34]  Tadatsugu Minami,et al.  Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes , 2008 .

[35]  J. Zak,et al.  Spectroelectrochemical responsiveness of a freestanding, boron-doped diamond, optically transparent electrode toward ferrocene , 2003 .

[36]  S. Eigler,et al.  A new parameter based on graphene for characterizing transparent, conductive materials , 2009 .

[37]  H. Dai,et al.  Highly conducting graphene sheets and Langmuir-Blodgett films. , 2008, Nature nanotechnology.

[38]  Chun-Wei Chen,et al.  Transparent and conducting electrodes for organic electronics from reduced graphene oxide , 2008 .

[39]  Qian Liu,et al.  Organic photovoltaic cells based on an acceptor of soluble graphene , 2008 .

[40]  Mikio Kumagai,et al.  Application of Carbon Nanotubes to Counter Electrodes of Dye-sensitized Solar Cells , 2003 .

[41]  G. Swain,et al.  Comparison of the Electrical, Optical, and Electrochemical Properties of Diamond and Indium Tin Oxide Thin-Film Electrodes , 2005 .

[42]  John R. Reynolds,et al.  Transparent, Conductive Carbon Nanotube Films , 2004, Science.

[43]  M. Purica,et al.  Investigation of structural properties of ITO thin films deposited on different substrates , 2007 .

[44]  Jae-Hong Kim,et al.  Fabrication and electrochemical properties of carbon nanotube film electrodes , 2006 .