Optical properties of zinc titanate perovskite prepared by reactive RF sputtering

Abstract In this paper we report results from optical transmittance spectroscopy complemented with data on structure from XRD measurements to determine optical properties of a series of ZnTiO3 perovskite thin films deposited on glass by reactive magnetron co-sputtering. The members of the series differ by the titanium content that was revealed as an origin of the changes not only in structure but also in dispersive optical properties. Low porosity has been discovered and calculated using the Bruggeman effective medium approximation. An apparent blue-shift of the optical band gap energies with increasing titanium content was observed. The observed band gap engineering is a good prospective for eg optoelectronic and photocatalytic applications of ZnTiO3.

[1]  M. Zeman,et al.  Structural properties of amorphous silicon prepared from hydrogen-diluted silane , 2009 .

[2]  R. Tilley Perovskites: Structure-Property Relationships , 2016 .

[3]  Dian Wang,et al.  Perovskite Solar Cells: Progress and Advancements , 2016 .

[4]  P M Woodward,et al.  Prediction of the crystal structures of perovskites using the software program SPuDS. , 2001, Acta crystallographica. Section B, Structural science.

[5]  P. Nanni,et al.  The preparation of porous perovskite membranes using BaTiO3 nanopowders , 2002 .

[6]  孙大林,et al.  Ag(TCNQ)准一维微米结构的制备及表征 , 2005 .

[7]  Yang Yang,et al.  Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications , 2015 .

[8]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[9]  M. Mulato,et al.  Retrieval of optical constants and thickness of thin films from transmission spectra. , 1997, Applied optics.

[10]  T. C. Choy Effective medium theory : principles and applications , 1999 .

[11]  Zhenjun Wu,et al.  Synthesis and characterization of ZnTiO3 with high photocatalytic activity , 2015 .

[12]  T. Poehler Far‐Infrared Cyclotron Resonance in GaAs , 1972 .

[13]  Zheng-tang Liu,et al.  Theoretical study of structural, elastic, electronic properties, and dispersion of optical functions of hexagonal ZnTiO3 , 2013 .

[14]  G. Jellison,et al.  Parameterization of the optical functions of amorphous materials in the interband region , 1996 .

[15]  Z. Ali,et al.  Structural and optoelectronic properties of the zinc titanate perovskite and spinel by modified Becke–Johnson potential , 2013 .

[16]  P. Novák,et al.  In-situ X-ray diffraction studies and magneto-optic Kerr effect on RF sputtered thin films of BaTiO3 and Co, Nb co-doped BaTiO3 , 2016 .

[17]  E. Garnett,et al.  The expanding world of hybrid perovskites: materials properties and emerging applications , 2015, MRS communications.

[18]  S. Amaravadi,et al.  Structural and optical properties of zinc titanates synthesized by precipitation method , 2015, Journal of Chemical Sciences.

[19]  W. Charnock The influence of grain size on the nature of portevin-lechatelier yielding , 1968 .

[20]  Wen-Hsi Lee,et al.  Formation and transformation of ZnTiO3 prepared by sputtering process , 2010 .

[21]  D. Kaur,et al.  Effect of phase transformation on optical and dielectric properties of pulsed laser deposited ZnTiO3 thin films , 2016 .

[22]  O. Sanchéz,et al.  Coordination chemistry of titanium and zinc in Ti(1−x)Zn2xO2 (0 ≤ x ≤ 1) ultrathin films grown by DC reactive magnetron sputtering , 2012 .

[23]  S. Ramakrishna,et al.  Perovskites: Solar cells & engineering applications – materials and device developments , 2015 .