Minkowski Sums of Polytopes : Combinatorics and Computation
暂无分享,去创建一个
[1] H. Minkowski. Volumen und Oberfläche , 1903 .
[2] R. Buck. Partition of Space , 1943 .
[3] B. Grünbaum. Unambiguous polyhedral graphs , 1963 .
[4] G. C. Shephard,et al. Convex Polytopes , 1969, The Mathematical Gazette.
[5] P. McMullen. The maximum numbers of faces of a convex polytope , 1970 .
[6] Bernt Lindström,et al. On the realization of convex polytopes, Euler's formula and Möbius functions , 1971 .
[7] T. Zaslavsky. Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes , 1975 .
[8] Tomás Lozano-Pérez,et al. An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.
[9] Mark Broadie,et al. A theorem about antiprisms , 1985 .
[10] Louis J. Billera,et al. Generalized Dehn-Sommerville relations for polytopes, spheres and Eulerian partially ordered sets , 1985 .
[11] Leonidas J. Guibas,et al. Computing convolutions by reciprocal search , 1986, SCG '86.
[12] David H. Bailey,et al. Algorithms and applications , 1988 .
[13] Jarek Rossignac,et al. Solid-interpolating deformations: Construction and animation of PIPs , 1991, Comput. Graph..
[14] Peter Gritzmann,et al. Minkowski Addition of Polytopes: Computational Complexity and Applications to Gröbner Basis , 1993, SIAM J. Discret. Math..
[15] Pijush K. Ghosh,et al. A unified computational framework for Minkowski operations , 1993, Comput. Graph..
[16] Rolf Schneider,et al. Polytopes and Brunn-Minkowski Theory , 1994 .
[17] M. Ziegler. Volume 152 of Graduate Texts in Mathematics , 1995 .
[18] David Avis,et al. Reverse Search for Enumeration , 1996, Discret. Appl. Math..
[19] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[20] Gershon Elber,et al. Offsets, sweeps, and Minkowski sums , 1999, Comput. Aided Des..
[21] David Bremner,et al. Incremental Convex Hull Algorithms Are Not Output Sensitive , 1996, ISAAC.
[22] Gábor Hetyei,et al. Flag Vectors of Eulerian Partially Ordered Sets , 1999, European journal of combinatorics (Print).
[23] G. Ziegler. Face numbers of 4-Polytopes and 3-Spheres , 2002, math/0208073.
[24] Komei Fukuda,et al. From the zonotope construction to the Minkowski addition of convex polytopes , 2004, J. Symb. Comput..
[25] Komei Fukuda,et al. Computing faces up to k dimensions of a Minkowski Sum of Polytopes , 2005, CCCG.
[26] L. Pachter,et al. Algebraic Statistics for Computational Biology: Preface , 2005 .
[27] Peter Huggins. iB4e: A Software Framework for Parametrizing Specialized LP Problems , 2006, ICMS.
[28] K. Fukuda,et al. A conjecture about Minkowski additions of convex polytopes , 2006 .
[29] Vladimir Gurvich,et al. Generating All Vertices of a Polyhedron Is Hard , 2006, SODA '06.
[30] Dan Halperin,et al. Exact and efficient construction of Minkowski sums of convex polyhedra with applications , 2006, Comput. Aided Des..
[31] G. Swaminathan. Robot Motion Planning , 2006 .
[32] Mathieu Dutour Sikiric,et al. Polyhedral representation conversion up to symmetries , 2007, ArXiv.
[33] Komei Fukuda,et al. f-Vectors of Minkowski Additions of Convex Polytopes , 2007, Discret. Comput. Geom..
[34] Takeaki Uno,et al. Polynomial time algorithms for maximizing the intersection volume of polytopes , 2007 .
[35] Dan Halperin,et al. On the exact maximum complexity of Minkowski sums of convex polyhedra , 2007, SCG '07.
[36] Raman Sanyal. Topological obstructions for vertex numbers of Minkowski sums , 2009, J. Comb. Theory, Ser. A.
[37] Christus,et al. A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins , 2022 .