Deacetylation of TFEB promotes fibrillar Aβ degradation by upregulating lysosomal biogenesis in microglia

[1]  Jian-jun Zhao,et al.  TFEB Participates in the Aβ-Induced Pathogenesis of Alzheimer's Disease by Regulating the Autophagy-Lysosome Pathway. , 2015, DNA and cell biology.

[2]  A. Ballabio,et al.  Neuronal-Targeted TFEB Accelerates Lysosomal Degradation of APP, Reducing Aβ Generation and Amyloid Plaque Pathogenesis , 2015, The Journal of Neuroscience.

[3]  G. Coppola,et al.  SIRT1 Deficiency in Microglia Contributes to Cognitive Decline in Aging and Neurodegeneration via Epigenetic Regulation of IL-1β , 2015, The Journal of Neuroscience.

[4]  J. Grutzendler,et al.  Microglia constitute a barrier that prevents neurotoxic protofibrillar Aβ42 hotspots around plaques , 2014, Nature Communications.

[5]  Qingli Xiao,et al.  Enhancing Astrocytic Lysosome Biogenesis Facilitates Aβ Clearance and Attenuates Amyloid Plaque Pathogenesis , 2014, The Journal of Neuroscience.

[6]  M. Blankenstein,et al.  Apolipoproteins E and J interfere with amyloid‐beta uptake by primary human astrocytes and microglia in vitro , 2014, Glia.

[7]  P. L. Fernández,et al.  Microglia receptors and their implications in the response to amyloid β for Alzheimer’s disease pathogenesis , 2014, Journal of Neuroinflammation.

[8]  L. Guarente,et al.  SIRT1 in Neurodevelopment and Brain Senescence , 2014, Neuron.

[9]  A. Ballabio,et al.  TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop , 2013, Nature Cell Biology.

[10]  Yuanhui Ma,et al.  Activated Cyclin-Dependent Kinase 5 Promotes Microglial Phagocytosis of Fibrillar β-Amyloid by Up-regulating Lipoprotein Lipase Expression* , 2013, Molecular & Cellular Proteomics.

[11]  Andrea Ballabio,et al.  Signals from the lysosome: a control centre for cellular clearance and energy metabolism , 2013, Nature Reviews Molecular Cell Biology.

[12]  Anders Björklund,et al.  TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity , 2013, Proceedings of the National Academy of Sciences.

[13]  Y. Graba,et al.  The emerging role of acetylation in the regulation of autophagy , 2013, Autophagy.

[14]  C. Bauvy,et al.  Activation of lysosomal function in the course of autophagy via mTORC1 suppression and autophagosome-lysosome fusion , 2013, Cell Research.

[15]  G. Landreth,et al.  Mechanisms Underlying the Rapid Peroxisome Proliferator-Activated Receptor-γ-Mediated Amyloid Clearance and Reversal of Cognitive Deficits in a Murine Model of Alzheimer's Disease , 2012, The Journal of Neuroscience.

[16]  E. Masliah,et al.  PGC-1α Rescues Huntington’s Disease Proteotoxicity by Preventing Oxidative Stress and Promoting TFEB Function , 2012, Science Translational Medicine.

[17]  L. Qiang,et al.  SIRT1 controls lipolysis in adipocytes via FOXO1-mediated expression of ATGL[S] , 2011, Journal of Lipid Research.

[18]  B. Davidson,et al.  Clarifying lysosomal storage diseases , 2011, Trends in Neurosciences.

[19]  Andrea Ballabio,et al.  TFEB Links Autophagy to Lysosomal Biogenesis , 2011, Science.

[20]  F. Maxfield,et al.  Degradation of Alzheimer's amyloid fibrils by microglia requires delivery of ClC-7 to lysosomes , 2011, Molecular biology of the cell.

[21]  J. Morris,et al.  Decreased Clearance of CNS β-Amyloid in Alzheimer’s Disease , 2010, Science.

[22]  L. Mucke,et al.  Amyloid-β–induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks , 2010, Nature Neuroscience.

[23]  L. Guarente,et al.  RETRACTED: SIRT1 Suppresses β-Amyloid Production by Activating the α-Secretase Gene ADAM10 , 2010, Cell.

[24]  Valerio Embrione,et al.  A Gene Network Regulating Lysosomal Biogenesis and Function , 2009, Science.

[25]  In Hye Lee,et al.  Regulation of Autophagy by the p300 Acetyltransferase* , 2009, Journal of Biological Chemistry.

[26]  M. Beal,et al.  Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer's disease , 2009, Neurochemistry International.

[27]  S. Hickman,et al.  Microglial Dysfunction and Defective β-Amyloid Clearance Pathways in Aging Alzheimer's Disease Mice , 2008, The Journal of Neuroscience.

[28]  D. Holtzman,et al.  ApoE Promotes the Proteolytic Degradation of Aβ , 2008, Neuron.

[29]  F. Maxfield,et al.  Degradation of fibrillar forms of Alzheimer's amyloid β-peptide by macrophages , 2008, Neurobiology of Aging.

[30]  F. Haiss,et al.  Dynamics of the Microglial/Amyloid Interaction Indicate a Role in Plaque Maintenance , 2008, The Journal of Neuroscience.

[31]  Nicholas E. Bruns,et al.  A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy , 2008, Proceedings of the National Academy of Sciences.

[32]  D. Holtzman,et al.  Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease , 2008, Nature.

[33]  A. Goldberg,et al.  FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. , 2007, Cell metabolism.

[34]  Y. de Koninck,et al.  Expression of CCR2 in Both Resident and Bone Marrow-Derived Microglia Plays a Critical Role in Neuropathic Pain , 2007, The Journal of Neuroscience.

[35]  F. Maxfield,et al.  Activation of microglia acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. , 2007, Molecular biology of the cell.

[36]  C. Geula,et al.  Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease , 2007, Nature Medicine.

[37]  Jun Wang,et al.  Neuronal SIRT1 Activation as a Novel Mechanism Underlying the Prevention of Alzheimer Disease Amyloid Neuropathology by Calorie Restriction* , 2006, Journal of Biological Chemistry.

[38]  L. Mucke,et al.  SIRT1 Protects against Microglia-dependent Amyloid-β Toxicity through Inhibiting NF-κB Signaling* , 2005, Journal of Biological Chemistry.

[39]  F. Helmchen,et al.  Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo , 2005, Science.

[40]  B. Hug,et al.  A Chromatin Immunoprecipitation Screen Reveals Protein Kinase Cβ as a Direct RUNX1 Target Gene* , 2004, Journal of Biological Chemistry.

[41]  Rena Li,et al.  Microglia and inflammatory mechanisms in the clearance of amyloid β peptide , 2002 .

[42]  J. Wegiel,et al.  The role of microglial cells and astrocytes in fibrillar plaque evolution in transgenic APPSW mice , 2001, Neurobiology of Aging.

[43]  R. Motter,et al.  Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease , 2000, Nature Medicine.

[44]  S D Rogers,et al.  Fibrillar b-Amyloid Induces Microglial Phagocytosis , Expression of Inducible Nitric Oxide Synthase , and Loss of a Select Population of Neurons in the Rat CNS In Vivo , 1998 .

[45]  L. Guarente Sirtuins, aging, and metabolism. , 2011, Cold Spring Harbor symposia on quantitative biology.

[46]  Neuron Immune Activation in Brain Aging and Neurodegeneration: Too Much or Too Little? , 2010 .

[47]  Diana Wang,et al.  SIRT1 Suppresses b-Amyloid Production by Activating the a-Secretase Gene ADAM10 , 2010 .

[48]  F. LaFerla,et al.  Alzheimer's disease. , 2010, The New England journal of medicine.

[49]  F. Maxfield,et al.  Degradation of fibrillar forms of Alzheimer's amyloid beta-peptide by macrophages. , 2008, Neurobiology of aging.

[50]  L. Mucke,et al.  SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. , 2005, The Journal of biological chemistry.

[51]  Rena Li,et al.  Microglia and inflammatory mechanisms in the clearance of amyloid beta peptide. , 2002, Glia.