Experimental challenges to targeting poorly characterized GPCRs: uncovering the therapeutic potential for free fatty acid receptors.

[1]  G. Milligan,et al.  Agonist activation of the G protein‐coupled receptor GPR35 involves transmembrane domain III and is transduced via Gα13 and β‐arrestin‐2 , 2011, British journal of pharmacology.

[2]  I. Kaji,et al.  Density distribution of free fatty acid receptor 2 (FFA2)-expressing and GLP-1-producing enteroendocrine L cells in human and rat lower intestine, and increased cell numbers after ingestion of fructo-oligosaccharide , 2011, Journal of Molecular Histology.

[3]  G. Milligan,et al.  When simple agonism is not enough: Emerging modalities of GPCR ligands , 2011, Molecular and Cellular Endocrinology.

[4]  B. Hudson,et al.  Selective Orthosteric Free Fatty Acid Receptor 2 (FFA2) Agonists , 2011, The Journal of Biological Chemistry.

[5]  Liyong Yang,et al.  The relationship between GPR40 and lipotoxicity of the pancreatic β-cells as well as the effect of pioglitazone. , 2010, Biochemical and biophysical research communications.

[6]  Graeme Milligan,et al.  Allostery at G Protein-Coupled Receptor Homo- and Heteromers: Uncharted Pharmacological Landscapes , 2010, Pharmacological Reviews.

[7]  R. Abagyan,et al.  Structures of the CXCR4 Chemokine GPCR with Small-Molecule and Cyclic Peptide Antagonists , 2010, Science.

[8]  Jonathan A. Javitch,et al.  Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist , 2010, Science.

[9]  S. Rasmussen,et al.  Structure of a nanobody-stabilized active state of the β2 adrenoceptor , 2010, Nature.

[10]  Weiliang Zhu,et al.  DC260126, a small-molecule antagonist of GPR40, improves insulin tolerance but not glucose tolerance in obese Zucker rats. , 2010, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[11]  Takafumi Hara,et al.  Structure-Activity Relationships of GPR120 Agonists Based on a Docking Simulation , 2010, Molecular Pharmacology.

[12]  S. Lenzen,et al.  Role of metabolically generated reactive oxygen species for lipotoxicity in pancreatic β‐cells , 2010, Diabetes, obesity & metabolism.

[13]  S. Watkins,et al.  GPR120 Is an Omega-3 Fatty Acid Receptor Mediating Potent Anti-inflammatory and Insulin-Sensitizing Effects , 2010, Cell.

[14]  Masahiro Ito,et al.  Discovery of TAK-875: A Potent, Selective, and Orally Bioavailable GPR40 Agonist. , 2010, ACS medicinal chemistry letters.

[15]  M. Cawthorne,et al.  Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids , 2010, FEBS letters.

[16]  Yong-Jun Jiang,et al.  Molecular docking and molecular dynamics simulation studies of GPR40 receptor-agonist interactions. , 2010, Journal of molecular graphics & modelling.

[17]  G. Frost,et al.  Free fatty acid receptor 2 and nutrient sensing: a proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation , 2010, Nutrition Research Reviews.

[18]  Miles Congreve,et al.  The impact of GPCR structures on pharmacology and structure‐based drug design , 2010, British journal of pharmacology.

[19]  R. Summers Molecular pharmacology of G protein-coupled receptors. Editorial. , 2010, British journal of pharmacology.

[20]  Christian Griesinger,et al.  Drug design for G-protein-coupled receptors by a ligand-based NMR method. , 2010, Angewandte Chemie.

[21]  S. Wong,et al.  The first synthetic agonists of FFA2: Discovery and SAR of phenylacetamides as allosteric modulators. , 2010, Bioorganic & medicinal chemistry letters.

[22]  Weiliang Zhu,et al.  A novel class of antagonists for the FFAs receptor GPR40. , 2009, Biochemical and biophysical research communications.

[23]  N. Morgan,et al.  G-protein coupled receptors mediating long chain fatty acid signalling in the pancreatic beta-cell. , 2009, Biochemical pharmacology.

[24]  P. Rosenstiel,et al.  Inflammationfor Neutrophil Recruitment during Intestinal G Protein-Coupled Receptor 43 Is Essential , 2009 .

[25]  R. Xavier,et al.  Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43 , 2009, Nature.

[26]  D. Connolly,et al.  Sequence polymorphisms provide a common consensus sequence for GPR41 and GPR42. , 2009, DNA and cell biology.

[27]  Leigh A. Stoddart,et al.  Agonism and allosterism: the pharmacology of the free fatty acid receptors FFA2 and FFA3 , 2009, British journal of pharmacology.

[28]  Marta Filizola,et al.  Modern homology modeling of G-protein coupled receptors: which structural template to use? , 2009, Journal of medicinal chemistry.

[29]  Charles L. Brooks,et al.  Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008 , 2009, Nature Reviews Drug Discovery.

[30]  R. Akers,et al.  Identification and characterization of the bovine G protein-coupled receptor GPR41 and GPR43 genes. , 2009, Journal of dairy science.

[31]  I. Kato,et al.  Expression of short-chain fatty acid receptor GPR41 in the human colon. , 2009, Biomedical research.

[32]  Takafumi Hara,et al.  Novel selective ligands for free fatty acid receptors GPR120 and GPR40 , 2009, Naunyn-Schmiedeberg's Archives of Pharmacology.

[33]  W. Soeller,et al.  Synthesis and SAR of 1,2,3,4-tetrahydroisoquinolin-1-ones as novel G-protein-coupled receptor 40 (GPR40) antagonists. , 2009, Bioorganic & medicinal chemistry letters.

[34]  T. Alquier,et al.  GPR40: Good Cop, Bad Cop? , 2009, Diabetes.

[35]  J. Caldwell,et al.  Lipid G Protein-coupled Receptor Ligand Identification Using β-Arrestin PathHunter™ Assay , 2009, Journal of Biological Chemistry.

[36]  Leigh A. Stoddart,et al.  The Action and Mode of Binding of Thiazolidinedione Ligands at Free Fatty Acid Receptor 1*♦ , 2009, The Journal of Biological Chemistry.

[37]  Kenneth Lundstrom,et al.  An Overview on GPCRs and Drug Discovery: Structure-Based Drug Design and Structural Biology on GPCRs , 2009, Methods in molecular biology.

[38]  K. Takeuchi,et al.  Overexpression of GPR40 in Pancreatic β-Cells Augments Glucose-Stimulated Insulin Secretion and Improves Glucose Tolerance in Normal and Diabetic Mice , 2009, Diabetes.

[39]  M. Gershengorn,et al.  Two Arginine-Glutamate Ionic Locks Near the Extracellular Surface of FFAR1 Gate Receptor Activation* , 2009, Journal of Biological Chemistry.

[40]  S. Bharate,et al.  Progress in the discovery and development of small-molecule modulators of G-protein-coupled receptor 40 (GPR40/FFA1/FFAR1): an emerging target for type 2 diabetes , 2009, Expert opinion on therapeutic patents.

[41]  Takafumi Hara,et al.  Distribution and regulation of protein expression of the free fatty acid receptor GPR120 , 2009, Naunyn-Schmiedeberg's Archives of Pharmacology.

[42]  Takafumi Hara,et al.  Flow Cytometry-Based Binding Assay for GPR40 (FFAR1; Free Fatty Acid Receptor 1) , 2009, Molecular Pharmacology.

[43]  S. Bharate,et al.  Discovery of diacylphloroglucinols as a new class of GPR40 (FFAR1) agonists. , 2008, Bioorganic & medicinal chemistry letters.

[44]  Yang Li,et al.  Identification and Functional Characterization of Allosteric Agonists for the G Protein-Coupled Receptor FFA2 , 2008, Molecular Pharmacology.

[45]  Leigh A. Stoddart,et al.  International Union of Pharmacology. LXXI. Free Fatty Acid Receptors FFA1, -2, and -3: Pharmacology and Pathophysiological Functions , 2008, Pharmacological Reviews.

[46]  A. Nicolucci,et al.  Incretin-based therapies: a new potential treatment approach to overcome clinical inertia in type 2 diabetes. , 2008, Acta bio-medica : Atenei Parmensis.

[47]  Leigh A. Stoddart,et al.  Conserved Polar Residues in Transmembrane Domains V, VI, and VII of Free Fatty Acid Receptor 2 and Free Fatty Acid Receptor 3 Are Required for the Binding and Function of Short Chain Fatty Acids* , 2008, Journal of Biological Chemistry.

[48]  R. Stevens,et al.  The 2.6 Angstrom Crystal Structure of a Human A2A Adenosine Receptor Bound to an Antagonist , 2008, Science.

[49]  M. Makishima,et al.  Identification of G protein-coupled receptor 120-selective agonists derived from PPARgamma agonists. , 2008, Journal of medicinal chemistry.

[50]  H. Davis,et al.  Lack of FFAR1/GPR40 Does Not Protect Mice From High-Fat Diet–Induced Metabolic Disease , 2008, Diabetes.

[51]  R. Tulley,et al.  Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. , 2008, American journal of physiology. Endocrinology and metabolism.

[52]  E. Kostenis,et al.  Discovery of potent and selective agonists for the free fatty acid receptor 1 (FFA(1)/GPR40), a potential target for the treatment of type II diabetes. , 2008, Journal of medicinal chemistry.

[53]  Takafumi Hara,et al.  Free fatty acid receptors and drug discovery. , 2008, Biological & pharmaceutical bulletin.

[54]  David M. Smith,et al.  The long-chain fatty acid receptor, GPR40, and glucolipotoxicity: investigations using GPR40-knockout mice. , 2008, Biochemical Society transactions.

[55]  Oliver P. Ernst,et al.  Crystal structure of opsin in its G-protein-interacting conformation , 2008, Nature.

[56]  H. Edlund,et al.  Gpr40 Is Expressed in Enteroendocrine Cells and Mediates Free Fatty Acid Stimulation of Incretin Secretion , 2008, Diabetes.

[57]  R. Rizzuto,et al.  Loss-of-function mutation of the GPR40 gene associates with abnormal stimulated insulin secretion by acting on intracellular calcium mobilization. , 2008, The Journal of clinical endocrinology and metabolism.

[58]  T. Alquier,et al.  The Fatty Acid Receptor GPR40 Plays a Role in Insulin Secretion In Vivo After High-Fat Feeding , 2008, Diabetes.

[59]  Yang Li,et al.  Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. , 2008, Endocrinology.

[60]  Yun-ping Zhou,et al.  Selective Small-Molecule Agonists of G Protein–Coupled Receptor 40 Promote Glucose-Dependent Insulin Secretion and Reduce Blood Glucose in Mice , 2008, Diabetes.

[61]  Gebhard F. X. Schertler,et al.  Structure of a β1-adrenergic G-protein-coupled receptor , 2008, Nature.

[62]  M. Sweet,et al.  Expression analysis of G Protein-Coupled Receptors in mouse macrophages , 2008, Immunome Research.

[63]  R. Copeland,et al.  Residence time of receptor-ligand complexes and its effect on biological function. , 2008, Biochemistry.

[64]  H. Schiöth,et al.  Structural diversity of G protein-coupled receptors and significance for drug discovery , 2008, Nature Reviews Drug Discovery.

[65]  S. Karaki,et al.  Expression of the short-chain fatty acid receptor, GPR43, in the human colon , 2008, Journal of Molecular Histology.

[66]  Stefano Costanzi,et al.  A virtual screen for diverse ligands: discovery of selective G protein-coupled receptor antagonists. , 2008, Journal of the American Chemical Society.

[67]  Y. Obara,et al.  Unsaturated fatty acids promote proliferation via ERK1/2 and Akt pathway in bovine mammary epithelial cells. , 2008, Biochemical and biophysical research communications.

[68]  G. Tsujimoto,et al.  Cloning and characterization of the rat free fatty acid receptor GPR120: in vivo effect of the natural ligand on GLP-1 secretion and proliferation of pancreatic β cells , 2008, Naunyn-Schmiedeberg's Archives of Pharmacology.

[69]  O. Civelli,et al.  Orphan GPCR research , 2008, British journal of pharmacology.

[70]  Stefano Costanzi,et al.  Discovery of novel agonists and antagonists of the free fatty acid receptor 1 (FFAR1) using virtual screening. , 2008, Journal of medicinal chemistry.

[71]  Takafumi Hara,et al.  Production and characterization of a monoclonal antibody against GPR40 (FFAR1; free fatty acid receptor 1). , 2008, Biochemical and biophysical research communications.

[72]  R. Stevens,et al.  High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor , 2007, Science.

[73]  M. Burghammer,et al.  Crystal structure of the human β2 adrenergic G-protein-coupled receptor , 2007, Nature.

[74]  Stefano Costanzi,et al.  Identification of Residues Important for Agonist Recognition and Activation in GPR40* , 2007, Journal of Biological Chemistry.

[75]  B. Ahrén GLP-1-based therapy of type 2 diabetes: GLP-1 mimetics and DPP-IV inhibitors , 2007, Current diabetes reports.

[76]  Alfonso T. García-Sosa,et al.  Structure-based calculation of drug efficiency indices , 2007, Bioinform..

[77]  N. Pace,et al.  Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases , 2007, Proceedings of the National Academy of Sciences.

[78]  R. Eglen,et al.  Emerging concepts of guanine nucleotide-binding protein-coupled receptor (GPCR) function and implications for high throughput screening. , 2007, Assay and drug development technologies.

[79]  B. Raaka,et al.  Bidirectional, iterative approach to the structural delineation of the functional "chemoprint" in GPR40 for agonist recognition. , 2007, Journal of medicinal chemistry.

[80]  C. Bouchard,et al.  G protein‐coupled receptor 84, a microglia‐associated protein expressed in neuroinflammatory conditions , 2007, Glia.

[81]  Songfeng Lu,et al.  Synthesis and biological evaluation of 3-aryl-3-(4-phenoxy)-propionic acid as a novel series of G protein-coupled receptor 40 agonists. , 2007, Journal of medicinal chemistry.

[82]  R. Lefkowitz,et al.  Seven transmembrane receptors: something old, something new , 2007, Acta physiologica.

[83]  G. Rayasam,et al.  Fatty acid receptors as new therapeutic targets for diabetes , 2007, Expert opinion on therapeutic targets.

[84]  T. Alquier,et al.  GPR40 Is Necessary but Not Sufficient for Fatty Acid Stimulation of Insulin Secretion In Vivo , 2007, Diabetes.

[85]  A. Goetz,et al.  Solid phase synthesis and SAR of small molecule agonists for the GPR40 receptor. , 2007, Bioorganic & medicinal chemistry letters.

[86]  G. Tsujimoto,et al.  The regulation of adipogenesis through GPR120. , 2007, Biochemical and biophysical research communications.

[87]  David E. Williams,et al.  Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. , 2007, Pharmacological research.

[88]  Leigh A. Stoddart,et al.  Uncovering the Pharmacology of the G Protein-Coupled Receptor GPR40: High Apparent Constitutive Activity in Guanosine 5′-O-(3-[35S]thio)triphosphate Binding Studies Reflects Binding of an Endogenous Agonist , 2007, Molecular Pharmacology.

[89]  W. Shehee,et al.  The relationship between the effects of short‐chain fatty acids on intestinal motility in vitro and GPR43 receptor activation , 2007, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[90]  H. Tian,et al.  Medium-chain Fatty Acids as Ligands for Orphan G Protein-coupled Receptor GPR84* , 2006, Journal of Biological Chemistry.

[91]  Leigh A. Stoddart,et al.  G protein-coupled receptors for free fatty acids. , 2006, Cellular signalling.

[92]  Edgar Jacoby,et al.  The 7 TM G‐Protein‐Coupled Receptor Target Family , 2006, ChemMedChem.

[93]  J. Fornwald,et al.  Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules , 2006, British journal of pharmacology.

[94]  M. Prentki,et al.  Islet beta cell failure in type 2 diabetes. , 2006, The Journal of clinical investigation.

[95]  Yumiko Saito,et al.  Orphan GPCRs and their ligands. , 2006, Pharmacology & therapeutics.

[96]  A. Sabirsh,et al.  Residues from transmembrane helices 3 and 5 participate in leukotriene B4 binding to BLT1. , 2006, Biochemistry.

[97]  A. Goetz,et al.  Synthesis and activity of small molecule GPR40 agonists. , 2006, Bioorganic & medicinal chemistry letters.

[98]  R. D. de Souza,et al.  Colonic Health: Fermentation and Short Chain Fatty Acids , 2006, Journal of clinical gastroenterology.

[99]  T. Iwanaga,et al.  Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine , 2006, Cell and Tissue Research.

[100]  K. Nakao,et al.  GPR40 gene expression in human pancreas and insulinoma. , 2005, Biochemical and biophysical research communications.

[101]  Ki-Choon Choi,et al.  Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. , 2005, Endocrinology.

[102]  C. Venkataraman,et al.  The G-protein coupled receptor, GPR84 regulates IL-4 production by T lymphocytes in response to CD3 crosslinking. , 2005, Immunology letters.

[103]  S. Tunaru,et al.  Characterization of Determinants of Ligand Binding to the Nicotinic Acid Receptor GPR109A (HM74A/PUMA-G) , 2005, Molecular Pharmacology.

[104]  Graeme Milligan,et al.  Techniques: promiscuous Galpha proteins in basic research and drug discovery. , 2005, Trends in pharmacological sciences.

[105]  K. Fujiwara,et al.  Oleic acid interacts with GPR40 to induce Ca2+ signaling in rat islet beta-cells: mediation by PLC and L-type Ca2+ channel and link to insulin release. , 2005, American journal of physiology. Endocrinology and metabolism.

[106]  H. Shapiro,et al.  Role of GPR40 in fatty acid action on the β cell line INS-1E , 2005 .

[107]  J. Miyazaki,et al.  Free fatty acid receptor 1 (FFA1R/GPR40) and its involvement in fatty-acid-stimulated insulin secretion , 2005, Cell and Tissue Research.

[108]  Tom L. Blundell,et al.  Keynote review: Structural biology and drug discovery , 2005 .

[109]  A. Zarzuelo,et al.  Effects of dietary fiber on inflammatory bowel disease. , 2005, Molecular nutrition & food research.

[110]  J. Tyndall,et al.  GPCR agonists and antagonists in the clinic. , 2005, Medicinal chemistry (Shariqah (United Arab Emirates)).

[111]  G. Tsujimoto,et al.  Free Fatty Acids Inhibit Serum Deprivation-induced Apoptosis through GPR120 in a Murine Enteroendocrine Cell Line STC-1* , 2005, Journal of Biological Chemistry.

[112]  H. Schiöth,et al.  The Repertoire of G-Protein–Coupled Receptors in Fully Sequenced Genomes , 2005, Molecular Pharmacology.

[113]  Robert J. Lefkowitz,et al.  Transduction of Receptor Signals by ß-Arrestins , 2005, Science.

[114]  M. Prentki,et al.  Oleate Promotes the Proliferation of Breast Cancer Cells via the G Protein-coupled Receptor GPR40* , 2005, Journal of Biological Chemistry.

[115]  N. Rubins,et al.  The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. , 2005, Cell metabolism.

[116]  P. Calder Polyunsaturated fatty acids and inflammation. , 2005, Biochemical Society transactions.

[117]  T. Saruta,et al.  GPR40 gene Arg211His polymorphism may contribute to the variation of insulin secretory capacity in Japanese men. , 2005, Metabolism: clinical and experimental.

[118]  T. Klabunde,et al.  Structure-based drug discovery using GPCR homology modeling: successful virtual screening for antagonists of the alpha1A adrenergic receptor. , 2005, Journal of medicinal chemistry.

[119]  T. Hansen,et al.  Studies of relationships between variation of the human G protein‐coupled receptor 40 Gene and Type 2 diabetes and insulin release , 2005, Diabetic medicine : a journal of the British Diabetic Association.

[120]  Willem Soudijn,et al.  Allosteric modulation of G protein-coupled receptors: perspectives and recent developments. , 2004, Drug discovery today.

[121]  Shay Bar-Haim,et al.  G protein-coupled receptors: in silico drug discovery in 3D. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[122]  A. Hopkins,et al.  Ligand efficiency: a useful metric for lead selection. , 2004, Drug discovery today.

[123]  Jinhai Gao,et al.  Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors , 2004, Nature.

[124]  Y. Obara,et al.  Existence of GPR40 functioning in a human breast cancer cell line, MCF-7. , 2004, Biochemical and biophysical research communications.

[125]  R. Kedzierski,et al.  Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[126]  Alan Wise,et al.  The identification of ligands at orphan G-protein coupled receptors. , 2004, Annual review of pharmacology and toxicology.

[127]  J. Traynor,et al.  The [35S]GTPγS binding assay: approaches and applications in pharmacology , 2003 .

[128]  S. Takeda,et al.  Identification of surrogate ligands for orphan G protein-coupled receptors. , 2003, Life sciences.

[129]  G. Milligan Constitutive activity and inverse agonists of G protein-coupled receptors: a current perspective. , 2003, Molecular pharmacology.

[130]  David E. Gloriam,et al.  Seven evolutionarily conserved human rhodopsin G protein‐coupled receptors lacking close relatives , 2003, FEBS letters.

[131]  M. Prentki,et al.  Saturated fatty acids synergize with elevated glucose to cause pancreatic beta-cell death. , 2003, Endocrinology.

[132]  M. Parmentier,et al.  Functional Characterization of Human Receptors for Short Chain Fatty Acids and Their Role in Polymorphonuclear Cell Activation* , 2003, Journal of Biological Chemistry.

[133]  D. Perez The evolutionarily triumphant G-protein-coupled receptor. , 2003, Molecular pharmacology.

[134]  H. Schiöth,et al.  The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. , 2003, Molecular pharmacology.

[135]  B. Olde,et al.  Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. , 2003, Biochemical and biophysical research communications.

[136]  M. Mortrud,et al.  The G protein-coupled receptor repertoires of human and mouse , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[137]  S. Dowell,et al.  The Orphan G Protein-coupled Receptors GPR41 and GPR43 Are Activated by Propionate and Other Short Chain Carboxylic Acids* , 2003, The Journal of Biological Chemistry.

[138]  J. Chambers,et al.  The Orphan G Protein-coupled Receptor GPR40 Is Activated by Medium and Long Chain Fatty Acids* , 2003, The Journal of Biological Chemistry.

[139]  Masataka Harada,et al.  Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40 , 2003, Nature.

[140]  J. Holst,et al.  Differential effects of saturated and monounsaturated fats on postprandial lipemia and glucagon-like peptide 1 responses in patients with type 2 diabetes. , 2003, The American journal of clinical nutrition.

[141]  John Hwa,et al.  The Unique Ligand-binding Pocket for the Human Prostacyclin Receptor , 2003, The Journal of Biological Chemistry.

[142]  B. Olde,et al.  A human cell surface receptor activated by free fatty acids and thiazolidinedione drugs. , 2003, Biochemical and biophysical research communications.

[143]  M. Krempf,et al.  Production rates and metabolism of short-chain fatty acids in the colon and whole body using stable isotopes. , 2003, The Proceedings of the Nutrition Society.

[144]  G. Milligan Principles: extending the utility of [35S]GTP gamma S binding assays. , 2003, Trends in pharmacological sciences.

[145]  Michael B Wheeler,et al.  The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. , 2002, Diabetes.

[146]  M. Prentki,et al.  Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. , 2002, Diabetes.

[147]  Gerhard Hessler,et al.  Drug Design Strategies for Targeting G‐Protein‐Coupled Receptors , 2002, Chembiochem : a European journal of chemical biology.

[148]  A. Hopkins,et al.  The druggable genome , 2002, Nature Reviews Drug Discovery.

[149]  S. Mitaku,et al.  Identification of G protein‐coupled receptor genes from the human genome sequence , 2002, FEBS letters.

[150]  G. Milligan Strategies to identify ligands for orphan G-protein-coupled receptors. , 2001, Biochemical Society transactions.

[151]  S. Yousefi,et al.  Cloning and expression analysis of a novel G‐protein‐coupled receptor selectively expressed on granulocytes , 2001, Journal of leukocyte biology.

[152]  S. Takeda,et al.  Receptor-Gα fusion proteins as a tool for ligand screening , 2001 .

[153]  H. Schaller,et al.  An expressed sequence tag (EST) data mining strategy succeeding in the discovery of new G-protein coupled receptors. , 2001, Journal of molecular biology.

[154]  K. Palczewski,et al.  Crystal structure of rhodopsin: A G protein-coupled receptor. , 2000, Science.

[155]  T. Sellers,et al.  Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. , 2000, The American journal of clinical nutrition.

[156]  Mark A Pereira,et al.  Dietary fiber, weight gain, and cardiovascular disease risk factors in young adults. , 1999, JAMA.

[157]  J. Manson,et al.  Whole-grain consumption and risk of coronary heart disease: results from the Nurses' Health Study. , 1999, The American journal of clinical nutrition.

[158]  B. Kobilka,et al.  GPCR–Gα fusion proteins: molecular analysis of receptor–G-protein coupling , 1999 .

[159]  I. Kuntz,et al.  The maximal affinity of ligands. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[160]  J. Holst,et al.  On the Treatment of Diabetes Mellitus with Glucagon‐like Peptide‐1 , 1998, Annals of the New York Academy of Sciences.

[161]  J. Chambers,et al.  Orphan G‐protein‐coupled receptors: the next generation of drug targets? , 1998, British journal of pharmacology.

[162]  J. Galmiche,et al.  Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat. , 1998, American journal of physiology. Gastrointestinal and liver physiology.

[163]  L. F. Kolakowski,et al.  A cluster of four novel human G protein-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13.1. , 1997, Biochemical and biophysical research communications.

[164]  S. Rees,et al.  G16 as a universal G protein adapter: implications for agonist screening strategies. , 1996, Trends in pharmacological sciences.

[165]  J. H. Johnson,et al.  Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[166]  J. Hyams,et al.  Fecal Short‐Chain Fatty Acids in Children with Inflammatory Bowel Disease , 1994, Journal of pediatric gastroenterology and nutrition.

[167]  D. Bylund,et al.  Radioligand binding methods: practical guide and tips , 1993 .

[168]  T. Adrian,et al.  Short-chain fatty acid release of peptide YY in the isolated rabbit distal colon. , 1991, Scandinavian journal of gastroenterology.

[169]  G Vassart,et al.  Selective amplification and cloning of four new members of the G protein-coupled receptor family. , 1989, Science.

[170]  C. M. Wood,et al.  Treatment of diversion colitis with short-chain-fatty acid irrigation. , 1989, The New England journal of medicine.

[171]  Brian K. Kobilka,et al.  Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin , 1986, Nature.

[172]  E. Anderson Hudson et al. , 1977 .

[173]  D. Steinberg,et al.  Hypoglycaemia and hyperinsulinaemia in response to raised free-fatty-acid levels. , 1967, Lancet.

[174]  M. Bohlooly-y,et al.  Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. , 2011, American journal of physiology. Endocrinology and metabolism.

[175]  D. Bylund,et al.  Radioligand binding methods for membrane preparations and intact cells. , 2011, Methods in molecular biology.

[176]  Leigh A. Stoddart,et al.  Constitutive activity of GPR40/FFA1 intrinsic or assay dependent? , 2010, Methods in enzymology.

[177]  I. Tikhonova,et al.  The family of G protein-coupled receptors: an example of membrane proteins. , 2010, Methods in molecular biology.

[178]  U. Boggi,et al.  G-protein-coupled receptor 40 (GPR40) expression and its regulation in human pancreatic islets: the role of type 2 diabetes and fatty acids. , 2010, Nutrition, metabolism, and cardiovascular diseases : NMCD.

[179]  G. Tsujimoto,et al.  Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120 , 2005, Nature Medicine.

[180]  P. Szekeres Functional assays for identifying ligands at orphan G protein-coupled receptors. , 2002, Receptors & channels.

[181]  S. Rees Guest Editor's Introduction: Functional Assay Systems for Drug Discovery at G-Protein Coupled Receptors and Ion Channels , 2002 .

[182]  G. Milligan,et al.  Insights into ligand pharmacology using receptor-G-protein fusion proteins. , 2000, Trends in pharmacological sciences.

[183]  J. Ballesteros,et al.  [19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors , 1995 .

[184]  M. Keen The problems and pitfalls of radioligand binding. , 1995, Methods in molecular biology.

[185]  D. Grandy,et al.  Cloning and expression of a rat D2 dopamine receptor cDNA , 1988, Nature.

[186]  H. Lodish Molecular Cell Biology , 1986 .