Sequencing of Pooled DNA Samples (Pool-Seq) Uncovers Complex Dynamics of Transposable Element Insertions in Drosophila melanogaster

Transposable elements (TEs) are mobile genetic elements that parasitize genomes by semi-autonomously increasing their own copy number within the host genome. While TEs are important for genome evolution, appropriate methods for performing unbiased genome-wide surveys of TE variation in natural populations have been lacking. Here, we describe a novel and cost-effective approach for estimating population frequencies of TE insertions using paired-end Illumina reads from a pooled population sample. Importantly, the method treats insertions present in and absent from the reference genome identically, allowing unbiased TE population frequency estimates. We apply this method to data from a natural Drosophila melanogaster population from Portugal. Consistent with previous reports, we show that low recombining genomic regions harbor more TE insertions and maintain insertions at higher frequencies than do high recombining regions. We conservatively estimate that there are almost twice as many “novel” TE insertion sites as sites known from the reference sequence in our population sample (6,824 novel versus 3,639 reference sites, with on average a 31-fold coverage per insertion site). Different families of transposable elements show large differences in their insertion densities and population frequencies. Our analyses suggest that the history of TE activity significantly contributes to this pattern, with recently active families segregating at lower frequencies than those active in the more distant past. Finally, using our high-resolution TE abundance measurements, we identified 13 candidate positively selected TE insertions based on their high population frequencies and on low Tajima's D values in their neighborhoods.

[1]  D. Charlesworth,et al.  Active Miniature Transposons From a Plant Genome and Its Nonrecombining Y Chromosome , 2008, Genetics.

[2]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[3]  G. Hannon,et al.  The Piwi-piRNA Pathway Provides an Adaptive Defense in the Transposon Arms Race , 2007, Science.

[4]  R. ffrench-Constant,et al.  A Single P450 Allele Associated with Insecticide Resistance in Drosophila , 2002, Science.

[5]  D. Petrov,et al.  References and Notes Materials and Methods Tables S1 and S2 References and Notes Pesticide Resistance via Transposition-mediated Adaptive Gene Truncation in Drosophila , 2022 .

[6]  C. Langley,et al.  Transposable Elements in Mendelian Populations. II. Distribution of Three COPIA-like Elements in a Natural Population of DROSOPHILA MELANOGASTER. , 1983, Genetics.

[7]  Brian Charlesworth,et al.  On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. , 2002, Molecular biology and evolution.

[8]  R. Drysdale FlyBase : a database for the Drosophila research community. , 2008, Methods in molecular biology.

[9]  PoPoolation DB: a user-friendly web-based database for the retrieval of natural polymorphisms in Drosophila , 2011, BMC Genetics.

[10]  W Stephan,et al.  The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. , 1995, Genetics.

[11]  A. E. Hirsh,et al.  Size matters: non-LTR retrotransposable elements and ectopic recombination in Drosophila. , 2003, Molecular biology and evolution.

[12]  Xabier Bello,et al.  Widespread evidence for horizontal transfer of transposable elements across Drosophila genomes , 2008, Genome Biology.

[13]  B. Charlesworth,et al.  Transposable element numbers in cosmopolitan inversions from a natural population of Drosophila melanogaster. , 1994, Genetics.

[14]  E. Eichler,et al.  Limitations of next-generation genome sequence assembly , 2011, Nature Methods.

[15]  D. Petrov,et al.  Population genomics of transposable elements in Drosophila melanogaster. , 2011, Molecular biology and evolution.

[16]  Gregory J. Hannon,et al.  Small RNAs as Guardians of the Genome , 2009, Cell.

[17]  H. Biessmann,et al.  The genomic organization of HeT-A retroposons inDrosophila melanogaster , 1993, Chromosoma.

[18]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[19]  D. Petrov,et al.  The adaptive role of transposable elements in the Drosophila genome. , 2009, Gene.

[20]  G. Rubin,et al.  The molecular basis of P-M hybrid dysgenesis: The nature of induced mutations , 1982, Cell.

[21]  Elena R. Lozovsky,et al.  Patterns of insertion and deletion in contrasting chromatin domains. , 2002, Molecular biology and evolution.

[22]  J. Jurka,et al.  Molecular paleontology of transposable elements in the Drosophila melanogaster genome , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  C. Hoogland,et al.  Chromosomal distribution of transposable elements in Drosophila melanogaster: test of the ectopic recombination model for maintenance of insertion site number. , 1996, Genetics.

[24]  D. Petrov,et al.  Paucity of chimeric gene-transposable element transcripts in the Drosophila melanogaster genome , 2005, BMC Biology.

[25]  M. Ashburner,et al.  The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective , 2002, Genome Biology.

[26]  D. Nouaud,et al.  Molecular domestication – more than a sporadic episode in evolution , 2004, Genetica.

[27]  Casey M. Bergman,et al.  Combined Evidence Annotation of Transposable Elements in Genome Sequences , 2005, PLoS Comput. Biol..

[28]  C. Langley,et al.  Transposable elements in natural populations of Drosophila melanogaster , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[29]  Julius Brennecke,et al.  Specialized piRNA Pathways Act in Germline and Somatic Tissues of the Drosophila Ovary , 2009, Cell.

[30]  J. M. Smith,et al.  The hitch-hiking effect of a favourable gene. , 1974, Genetical research.

[31]  M. G. Kidwell,et al.  Hybrid Dysgenesis in DROSOPHILA MELANOGASTER: A Syndrome of Aberrant Traits Including Mutation, Sterility and Male Recombination. , 1977, Genetics.

[32]  B. Charlesworth,et al.  The Effects of Recombination Rate on the Distribution and Abundance of Transposable Elements , 2008, Genetics.

[33]  D. Petrov,et al.  High intrinsic rate of DNA loss in Drosophila , 1996, Nature.

[34]  R. Trivers,et al.  Genes in Conflict , 2006 .

[35]  X. Maside,et al.  The lack of recombination drives the fixation of transposable elements on the fourth chromosome of Drosophila melanogaster. , 2004, Genetical research.

[36]  Michael Ashburner,et al.  Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome , 2006, Genome Biology.

[37]  Faraz Hach,et al.  Next-generation VariationHunter: combinatorial algorithms for transposon insertion discovery , 2010, Bioinform..

[38]  J. Oakeshott,et al.  Nucleotide polymorphism in the Est6 promoter, which is widespread in derived populations of Drosophila melanogaster, changes the level of Esterase 6 expressed in the male ejaculatory duct. , 2002, Genetics.

[39]  B. Charlesworth,et al.  Fixation of transposable elements in the Drosophila melanogaster genome. , 2005, Genetical research.

[40]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[41]  Emmanuelle Lerat,et al.  Comparative analysis of transposable elements in the melanogaster subgroup sequenced genomes. , 2011, Gene.

[42]  B. Charlesworth,et al.  A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. , 2007, Genetical research.

[43]  R. Hudson,et al.  On the role of unequal exchange in the containment of transposable element copy number. , 1988, Genetical research.

[44]  T. Eickbush,et al.  Rates of R1 and R2 retrotransposition and elimination from the rDNA locus of Drosophila melanogaster. , 2002, Genetics.

[45]  B. Charlesworth,et al.  Patterns of genetic variation at a chromosome 4 locus of Drosophila melanogaster and D. simulans. , 2002, Genetics.

[46]  G. Glazko,et al.  Origin of a substantial fraction of human regulatory sequences from transposable elements. , 2003, Trends in genetics : TIG.

[47]  Manolis Kellis,et al.  Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila , 2007, Cell.

[48]  W. G. Hill,et al.  The effect of linkage on limits to artificial selection. , 1966, Genetical research.

[49]  F. Lottspeich,et al.  How Y chromosomes become genetically inert. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[50]  C. Bergman,et al.  Recent LTR retrotransposon insertion contrasts with waves of non-LTR insertion since speciation in Drosophila melanogaster , 2007, Proceedings of the National Academy of Sciences.

[51]  A. Futschik,et al.  PoPoolation: A Toolbox for Population Genetic Analysis of Next Generation Sequencing Data from Pooled Individuals , 2011, PloS one.

[52]  Manolo Gouy,et al.  Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome. , 2002, Genome research.

[53]  J. Bennetzen,et al.  A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.

[54]  B. Charlesworth,et al.  Rates of movement and distribution of transposable elements in Drosophila melanogaster: in situ hybridization vs Southern blotting data. , 2001, Genetical research.

[55]  C. Hoogland,et al.  Transposable element distribution in Drosophila. , 1997, Genetics.

[56]  D. Petrov,et al.  Rapid sequence turnover at an intergenic locus in Drosophila. , 2004, Molecular biology and evolution.

[57]  A. Goldman,et al.  The efficiency of meiotic recombination between dispersed sequences in Saccharomyces cerevisiae depends upon their chromosomal location. , 1996, Genetics.

[58]  M. Aguadé,et al.  The Dynamics of the roo Transposable Element In Mutation-Accumulation Lines and Segregating Populations of Drosophila melanogaster , 2007, Genetics.

[59]  Jacob Cohen Partialed products are interactions; partialed powers are curve components. , 1978 .

[60]  D. Schluter,et al.  Adaptation from standing genetic variation. , 2008, Trends in ecology & evolution.

[61]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[62]  Andrew G. Clark,et al.  Population Genomic Inferences from Sparse High-Throughput Sequencing of Two Populations of Drosophila melanogaster , 2009, Genome biology and evolution.

[63]  Dixie L Mager,et al.  Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. , 2003, Trends in genetics : TIG.

[64]  S. Nuzhdin,et al.  Mutation accumulation and the effect of copia insertions in Drosophila melanogaster. , 2004, Genetical research.

[65]  C. Biémont Population genetics of transposable DNA elements , 2004, Genetica.

[66]  D. Petrov,et al.  T-lex: a program for fast and accurate assessment of transposable element presence using next-generation sequencing data , 2010, Nucleic acids research.

[67]  B. Charlesworth,et al.  Accumulation of P elements in minority inversions in natural populations of Drosophila melanogaster. , 1992, Genetical research.

[68]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[69]  J. Brookfield,et al.  Population dynamics of the copia, mdg1, mdg3, gypsy, and P transposable elements in a natural population of Drosophila melanogaster. , 1994, Genetical research.

[70]  J. Hermisson,et al.  Soft Sweeps , 2005, Genetics.

[71]  C. Langley,et al.  Chromosome rearrangement by ectopic recombination in Drosophila melanogaster: genome structure and evolution. , 1991, Genetics.

[72]  M. G. Kidwell Horizontal transfer of P elements and other short inverted repeat transposons , 2004, Genetica.

[73]  Haipeng Li,et al.  A new test for detecting recent positive selection that is free from the confounding impacts of demography. , 2011, Molecular biology and evolution.

[74]  Josefa González,et al.  High Rate of Recent Transposable Element–Induced Adaptation in Drosophila melanogaster , 2008, PLoS biology.

[75]  A. Spradling,et al.  Insertional mutagenesis of the Drosophila genome with single P elements. , 1988, Science.

[76]  Yun S. Song,et al.  Molecular Population Genetics of Drosophila Subtelomeric DNA , 2008, Genetics.

[77]  M. Cáceres,et al.  Silencing of a gene adjacent to the breakpoint of a widespread Drosophila inversion by a transposon-induced antisense RNA , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[78]  D. Petrov,et al.  High rate of DNA loss in the Drosophila melanogaster and Drosophila virilis species groups. , 1998, Molecular biology and evolution.

[79]  B. Charlesworth,et al.  The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. I. Element frequencies and distribution. , 1992, Genetical research.

[80]  Chris Sander,et al.  Characterizing gene sets with FuncAssociate , 2003, Bioinform..

[81]  B. Charlesworth,et al.  The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. III. Element abundances in heterochromatin. , 1994, Genetical research.

[82]  B. Charlesworth,et al.  The population genetics of Drosophila transposable elements. , 1989, Annual review of genetics.

[83]  N. Johnson :Genes in Conflict: The Biology of Selfish Genetic Elements. , 2007 .

[84]  S. Otto,et al.  Contrasting Patterns of Transposable-Element Insertion Polymorphism and Nucleotide Diversity in Autotetraploid and Allotetraploid Arabidopsis Species , 2008, Genetics.

[85]  S. Nuzhdin Sure facts, speculations, and open questions about the evolution of transposable element copy number , 2004, Genetica.

[86]  F. Tajima Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. , 1989, Genetics.

[87]  N. Bowen,et al.  Drosophila euchromatic LTR retrotransposons are much younger than the host species in which they reside. , 2001, Genome research.

[88]  Kevin R. Thornton,et al.  Nucleotide Variation Along the Drosophila melanogaster Fourth Chromosome , 2002, Science.

[89]  H. Innan,et al.  Pattern of polymorphism after strong artificial selection in a domestication event. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[90]  E. Galun Transposable Elements , 2003, Springer Netherlands.

[91]  R. Levis,et al.  HeT-A, a transposable element specifically involved in "healing" broken chromosome ends in Drosophila melanogaster , 1992, Molecular and cellular biology.

[92]  W. Stephan,et al.  Detecting a local signature of genetic hitchhiking along a recombining chromosome. , 2002, Genetics.

[93]  B. Charlesworth,et al.  Genetic recombination and molecular evolution. , 2009, Cold Spring Harbor symposia on quantitative biology.