The First Genome of the Cold-Water Octocoral, the Pink Sea Fan, Eunicella verrucosa

Abstract Cold-water corals form an important part of temperate benthic ecosystems by increasing three-dimensionality and providing an important ecological substrate for other benthic fauna. However, the fragile three-dimensional structure and life-history characteristics of cold-water corals can leave populations vulnerable to anthropogenic disturbance. Meanwhile, the ability of temperate octocorals, particularly shallow-water species, to respond to adjustments in their environment linked to climate change has not been studied. This study reports the first genome assembly of the pink sea fan (Eunicella verrucosa), a temperate shallow-water octocoral species. We produced an assembly of 467 Mb, comprising 4,277 contigs and an N50 of 250,417 bp. In total, 213 Mb (45.96% of the genome) comprised repetitive sequences. Annotation of the genome using RNA-seq data derived from polyp tissue and gorgonin skeleton resulted in 36,099 protein-coding genes after 90% similarity clustering, capturing 92.2% of the complete Benchmarking Universal Single-Copy Orthologs (BUSCO) ortholog benchmark genes. Functional annotation of the proteome using orthology inference identified 25,419 annotated genes. This genome adds to the very few genomic resources currently available in the octocoral community and represents a key step in allowing scientists to investigate the genomic and transcriptomic responses of octocorals to climate change.

[1]  P. López-González,et al.  Northward range expansion of Leptogorgia dakarensis and Eunicella racemosa (Cnidaria: Gorgoniidae: Anthozoa) in the Eastern Atlantic , 2023, Journal of the Marine Biological Association of the United Kingdom.

[2]  A. Quattrini,et al.  Revisionary systematics of Octocorallia (Cnidaria: Anthozoa) guided by phylogenomics , 2022, Bulletin of the Society of Systematic Biologists.

[3]  Tobias Baril,et al.  Earl Grey: a fully automated user-friendly transposable element annotation and analysis pipeline , 2022, bioRxiv.

[4]  J. Stevens,et al.  Predicting habitat suitability and range shifts under projected climate change for two octocorals in the north-east Atlantic , 2022, PeerJ.

[5]  P. Bork,et al.  eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale , 2021, bioRxiv.

[6]  Ruoyu Liu,et al.  The First Draft Genome of a Cold-Water Coral Trachythela sp. (Alcyonacea: Stolonifera: Clavulariidae) , 2020, Genome biology and evolution.

[7]  Travis J. Wheeler,et al.  The Dfam community resource of transposable element families, sequence models, and genome annotations , 2020, Mobile DNA.

[8]  Mario Stanke,et al.  BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database , 2020, bioRxiv.

[9]  Giovanni Chimienti,et al.  Vulnerable Forests of the Pink Sea Fan Eunicella verrucosa in the Mediterranean Sea , 2020, Diversity.

[10]  Cédric Feschotte,et al.  RepeatModeler2 for automated genomic discovery of transposable element families , 2020, Proceedings of the National Academy of Sciences.

[11]  F. Mastrototaro,et al.  Mesophotic and Deep-Sea Vulnerable Coral Habitats of the Mediterranean Sea: Overview and Conservation Perspectives , 2019, Advances in the Studies of the Benthic Zone.

[12]  T. Alioto,et al.  The Genome Sequence of the Octocoral Paramuricea clavata – A Key Resource To Study the Impact of Climate Change in the Mediterranean , 2019, bioRxiv.

[13]  Jonathan Wood,et al.  Identifying and removing haplotypic duplication in primary genome assemblies , 2019, bioRxiv.

[14]  J. Stevens,et al.  Single nucleotide polymorphisms reveal a genetic cline across the north‐east Atlantic and enable powerful population assignment in the European lobster , 2019, Evolutionary applications.

[15]  Yu Lin,et al.  Assembly of long, error-prone reads using repeat graphs , 2018, Nature Biotechnology.

[16]  D. Booth,et al.  Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change , 2019, Philosophical Transactions of the Royal Society B.

[17]  Yun Sung Cho,et al.  The Draft Genome of an Octocoral, Dendronephthya gigantea , 2018, bioRxiv.

[18]  J. Stevens,et al.  Assessing connectivity between MPAs: Selecting taxa and translating genetic data to inform policy , 2018, Marine Policy.

[19]  D. Allemand,et al.  Comparative analysis of the genomes of Stylophora pistillata and Acropora digitifera provides evidence for extensive differences between species of corals , 2017, bioRxiv.

[20]  Mark Blaxter,et al.  BlobTools: Interrogation of genome assemblies , 2017, F1000Research.

[21]  J. Stevens,et al.  Contrasting patterns of population structure and gene flow facilitate exploration of connectivity in two widely distributed temperate octocorals , 2017, Heredity.

[22]  J. Ryland,et al.  Handbook of the marine fauna of north-west Europe , 2017 .

[23]  M. Witt,et al.  Pink sea fans (Eunicella verrucosa) as indicators of the spatial efficacy of Marine Protected Areas in southwest UK coastal waters , 2016 .

[24]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[25]  S. Civit,et al.  Demographic responses to warming: reproductive maturity and sex influence vulnerability in an octocoral , 2015, Coral Reefs.

[26]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[27]  J. Ledoux,et al.  Adaptive abilities of the Mediterranean red coral Corallium rubrum in a heterogeneous and changing environment: from population to functional genetics , 2013 .

[28]  A. Krupa,et al.  Isolation and characterization of fourteen microsatellite loci from the endangered octocoral Eunicella verrucosa (Pallas 1766) , 2013, Conservation Genetics Resources.

[29]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[30]  P. Francour,et al.  Bathymetric distribution and growth rates of Eunicella verrucosa (Cnidaria: Gorgoniidae) populations along the Marseilles coast (France) , 2012 .

[31]  J. Olivier,et al.  Development of a new standardised method for sustainable monitoring of the vulnerable pink sea fan Eunicella verrucosa , 2012 .

[32]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[33]  D. Allemand,et al.  Physiological response of the symbiotic gorgonian Eunicella singularis to a long-term temperature increase , 2009, Journal of Experimental Biology.

[34]  J. Hall‐Spencer,et al.  Diseases affect cold-water corals too: Eunicella verrucosa (Cnidaria: Gorgonacea) necrosis in SW England. , 2007, Diseases of aquatic organisms.

[35]  Burkhard Morgenstern,et al.  Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources , 2006, BMC Bioinformatics.

[36]  Nansheng Chen,et al.  Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences , 2009, Current protocols in bioinformatics.

[37]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[38]  Hugh Waldorf Astor Marine Biological Association of the United Kingdom , 1982, Journal of the Marine Biological Association of the United Kingdom.

[39]  K. Mizusawa,et al.  Genome size distribution in phylum Cnidaria , 2016, Fisheries Science.

[40]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..