Schrödinger equation for convex plane polygons: A tiling method for the derivation of eigenvalues and eigenfunctions
暂无分享,去创建一个
[1] M. Berry. Quantizing a classically ergodic system: Sinai's billiard and the KKR method , 1981 .
[2] J. Neumann,et al. Beweis des Ergodensatzes und desH-Theorems in der neuen Mechanik , 1929 .
[3] V. I. Arnolʹd,et al. Ergodic problems of classical mechanics , 1968 .
[4] Joseph Ford,et al. Analytically solvable dynamical systems which are not integrable , 1984 .
[5] G. Galperin. Non-periodic and not everywhere dense billiard trajectories in convex polygons and polyhedrons , 1983 .
[6] V. G. Sigillito,et al. Eigenvalues of the Laplacian in Two Dimensions , 1984 .
[7] S. M. Blinder,et al. Solution of the Schrödinger equation for a particle in an equilateral triangle , 1985 .
[8] Steven P. Kerckhoff,et al. Ergodicity of billiard flows and quadratic differentials , 1986 .
[9] M. Berry,et al. Diabolical points in the spectra of triangles , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[10] T. Seligman,et al. Quantum Chaos and Statistical Nuclear Physics , 1986 .
[11] M. V. Berry,et al. Pseudointegrable systems in classical and quantum mechanics , 1981 .
[12] H. Coxeter,et al. Generators and relations for discrete groups , 1957 .
[13] C. Itzykson. SIMPLE INTEGRABLE SYSTEMS, AND LIE ALGEBRAS , 1986 .
[14] Spectres et groupes cristallographiques I: Domaines euclidiens , 1980 .
[15] A. Perelomov,et al. Quantum Integrable Systems Related to Lie Algebras , 1983 .
[16] A. N. Zemlyakov,et al. Topological transitivity of billiards in polygons , 1975 .
[17] Mark A. Pinsky,et al. The Eigenvalues of an Equilateral Triangle , 1980 .
[18] V. Petkov,et al. Periods of multiple reflecting geodesics and inverse spectral results , 1987 .
[19] M. Gaudin. Réduction du problème du billard quantique triangulaire , 1986 .