Schrödinger equation for convex plane polygons: A tiling method for the derivation of eigenvalues and eigenfunctions

Motivated by a recently advanced conjecture on the ergodic properties of Quantum Systems, the problem of solving the Schrodinger equation for a free particle in a plane polygonal enclosure is revisited. It will be shown that two elementary lemmas suffice to give a complete characterization of the polygons for which a solution can be found in terms of a finite superposition of plane waves, without making use of advanced group‐theoretical techniques. It turns out, inter alia, that these polygons, considered as classical billiards, are all and only those which are completely integrable in the sense of Arnold’s theorem.

[1]  M. Berry Quantizing a classically ergodic system: Sinai's billiard and the KKR method , 1981 .

[2]  J. Neumann,et al.  Beweis des Ergodensatzes und desH-Theorems in der neuen Mechanik , 1929 .

[3]  V. I. Arnolʹd,et al.  Ergodic problems of classical mechanics , 1968 .

[4]  Joseph Ford,et al.  Analytically solvable dynamical systems which are not integrable , 1984 .

[5]  G. Galperin Non-periodic and not everywhere dense billiard trajectories in convex polygons and polyhedrons , 1983 .

[6]  V. G. Sigillito,et al.  Eigenvalues of the Laplacian in Two Dimensions , 1984 .

[7]  S. M. Blinder,et al.  Solution of the Schrödinger equation for a particle in an equilateral triangle , 1985 .

[8]  Steven P. Kerckhoff,et al.  Ergodicity of billiard flows and quadratic differentials , 1986 .

[9]  M. Berry,et al.  Diabolical points in the spectra of triangles , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[10]  T. Seligman,et al.  Quantum Chaos and Statistical Nuclear Physics , 1986 .

[11]  M. V. Berry,et al.  Pseudointegrable systems in classical and quantum mechanics , 1981 .

[12]  H. Coxeter,et al.  Generators and relations for discrete groups , 1957 .

[13]  C. Itzykson SIMPLE INTEGRABLE SYSTEMS, AND LIE ALGEBRAS , 1986 .

[14]  Spectres et groupes cristallographiques I: Domaines euclidiens , 1980 .

[15]  A. Perelomov,et al.  Quantum Integrable Systems Related to Lie Algebras , 1983 .

[16]  A. N. Zemlyakov,et al.  Topological transitivity of billiards in polygons , 1975 .

[17]  Mark A. Pinsky,et al.  The Eigenvalues of an Equilateral Triangle , 1980 .

[18]  V. Petkov,et al.  Periods of multiple reflecting geodesics and inverse spectral results , 1987 .

[19]  M. Gaudin Réduction du problème du billard quantique triangulaire , 1986 .