Equivariant Poincaré Polynomials and Counting Points over Finite Fields
暂无分享,去创建一个
G. Lehrer | Gus Lehrer | M. Kisin | M. Kisin
[1] G. Segal,et al. Homology stability for classical regular semisimple varieties , 2001 .
[2] G. Lehrer. The l-adic cohomology of hyperplane complements , 1992 .
[3] Alan Robinson,et al. The tree representation of ∑n + 1 , 1996 .
[4] G. Lehrer,et al. Poincaré polynomials for unitary reflection groups , 1995 .
[5] Operads and Moduli Spaces of Genus 0 Riemann Surfaces , 1994, alg-geom/9411004.
[6] Masayoshi Nagata,et al. Imbedding of an abstract variety in a complete variety , 1962 .
[7] Edward Bierstone,et al. Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant , 1995 .
[8] G. Lehrer. The Cohomology of the Regular Semisimple Variety , 1998 .
[9] Julie Blair,et al. Cohomology Actions and Centralisers in Unitary Reflection Groups , 2001 .
[10] H. Hironaka. Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: II , 1964 .
[11] Y. Manin. Generating Functions in Algebraic Geometry and Sums Over Trees , 1994, alg-geom/9407005.
[12] G. Lehrer,et al. On the Poincaré Series Associated with Coxeter Group Actions on Complements of Hyperplanes , 1987 .
[13] T. A. Springer. Regular elements of finite reflection groups , 1974 .