The relationship between transmission time and clustering methods in Mycobacterium tuberculosis epidemiology

[1]  Stefan Niemann,et al.  MTBseq: a comprehensive pipeline for whole genome sequence analysis of Mycobacterium tuberculosis complex isolates , 2018, PeerJ.

[2]  W. Hanage,et al.  Within-host Mycobacterium tuberculosis diversity and its utility for inferences of transmission , 2018, Microbial genomics.

[3]  Stefan Niemann,et al.  Harmonized Genome Wide Typing of Tubercle Bacilli Using a Web-Based Gene-By-Gene Nomenclature System , 2018, EBioMedicine.

[4]  D. Chin,et al.  Genetic sequencing for surveillance of drug resistance in tuberculosis in highly endemic countries: a multi-country population-based surveillance study , 2018, The Lancet. Infectious diseases.

[5]  V. Mizrahi,et al.  Mycobacterium tuberculosis. , 2018, Trends in microbiology.

[6]  Ted Cohen,et al.  Beyond the SNP threshold: identifying outbreak clusters using inferred transmissions , 2018, bioRxiv.

[7]  Thomas R Rogers,et al.  A cluster of multidrug-resistant Mycobacterium tuberculosis among patients arriving in Europe from the Horn of Africa: a molecular epidemiological study , 2018, The Lancet. Infectious diseases.

[8]  Derrick W. Crook,et al.  A Quantitative Evaluation of MIRU-VNTR Typing Against Whole-Genome Sequencing for Identifying Mycobacterium tuberculosis Transmission: A Prospective Observational Cohort Study , 2018, bioRxiv.

[9]  A. Pain,et al.  Mutations in ppe38 block PE_PGRS secretion and increase virulence of Mycobacterium tuberculosis , 2018, Nature Microbiology.

[10]  Victoria Cook,et al.  Molecular Epidemiology of Tuberculosis in British Columbia, Canada: A 10-Year Retrospective Study , 2017, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[11]  L. Rigouts,et al.  Half of rifampicin-resistant Mycobacterium tuberculosis complex isolated from tuberculosis patients in Sub-Saharan Africa have concomitant resistance to pyrazinamide , 2017, PloS one.

[12]  L. Rigouts,et al.  Genotypic characterization directly applied to sputum improves the detection of Mycobacterium africanum West African 1, under-represented in positive cultures , 2017, PLoS neglected tropical diseases.

[13]  T. Clark,et al.  Pyrazinamide resistance-conferring mutations in pncA and the transmission of multidrug resistant TB in Georgia , 2017, BMC Infectious Diseases.

[14]  S. Niemann,et al.  Extent of transmission captured by contact tracing in a tuberculosis high endemic setting , 2017, European Respiratory Journal.

[15]  P. Beckert,et al.  New Mycobacterium tuberculosis Complex Sublineage, Brazzaville, Congo , 2017, Emerging infectious diseases.

[16]  C. Saegerman,et al.  Molecular epidemiology of Mycobacterium tuberculosis complex in Brussels, 2010–2013 , 2017, PloS one.

[17]  A. Narechania,et al.  Transmission of Extensively Drug‐Resistant Tuberculosis in South Africa , 2017, The New England journal of medicine.

[18]  B. Tessema,et al.  FIND Tuberculosis Strain Bank: a Resource for Researchers and Developers Working on Tests To Detect Mycobacterium tuberculosis and Related Drug Resistance , 2017, Journal of Clinical Microbiology.

[19]  J. Gardy,et al.  A brief primer on genomic epidemiology: lessons learned from Mycobacterium tuberculosis , 2017, Annals of the New York Academy of Sciences.

[20]  Y. Reddy,et al.  Tuberculosis Strain Bank, A Resource For Researchers And Developers Working on Tests To Detect Mycobacterium Tuberculosis and Related Drug Resistance , 2017 .

[21]  Stefan Niemann,et al.  The Evolution of Strain Typing in the Mycobacterium tuberculosis Complex. , 2017, Advances in experimental medicine and biology.

[22]  I. Comas Genomic Epidemiology of Tuberculosis. , 2017, Advances in experimental medicine and biology.

[23]  K. Floyd,et al.  Population-based resistance of Mycobacterium tuberculosis isolates to pyrazinamide and fluoroquinolones: results from a multicountry surveillance project , 2016, The Lancet. Infectious diseases.

[24]  Julian Parkhill,et al.  Whole Genome Sequence Analysis of a Large Isoniazid-Resistant Tuberculosis Outbreak in London: A Retrospective Observational Study , 2016, PLoS medicine.

[25]  S. Niemann,et al.  Tracing Mycobacterium tuberculosis transmission by whole genome sequencing in a high incidence setting: a retrospective population-based study in East Greenland , 2016, Scientific Reports.

[26]  David J. Edwards,et al.  Genome-scale rates of evolutionary change in bacteria , 2016, bioRxiv.

[27]  F. Balloux,et al.  Antimicrobial Resistance in Mycobacterium tuberculosis: The Odd One Out. , 2016, Trends in microbiology.

[28]  Xavier Didelot,et al.  Genomic Infectious Disease Epidemiology in Partially Sampled and Ongoing Outbreaks , 2016, bioRxiv.

[29]  Chao Lu,et al.  Retrospective study , 2016, Medicine.

[30]  E. Chernyaeva,et al.  Next-Generation Sequencing of Mycobacterium tuberculosis , 2016, Emerging infectious diseases.

[31]  Hansjakob Furrer,et al.  Standard Genotyping Overestimates Transmission of Mycobacterium tuberculosis among Immigrants in a Low-Incidence Country , 2016, Journal of Clinical Microbiology.

[32]  Q. Gao,et al.  Prevalence and transmission of pyrazinamide resistant Mycobacterium tuberculosis in China. , 2016, Tuberculosis.

[33]  Jason Hinds,et al.  Clinical use of whole genome sequencing for Mycobacterium tuberculosis , 2016, BMC Medicine.

[34]  Joanne R. Winter,et al.  Interpreting whole genome sequencing for investigating tuberculosis transmission: a systematic review , 2016, BMC Medicine.

[35]  T. Clark,et al.  Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages , 2016, BMC Genomics.

[36]  Y. Teo,et al.  SpoTyping: fast and accurate in silico Mycobacterium spoligotyping from sequence reads , 2016, Genome Medicine.

[37]  D. Cirillo,et al.  Best approaches to drug-resistance surveillance at the country level , 2016, International journal of mycobacteriology.

[38]  G. Kaplan,et al.  A Novel Molecular Strategy for Surveillance of Multidrug Resistant Tuberculosis in High Burden Settings , 2016, PloS one.

[39]  A. Stamatakis,et al.  Efficient Detection of Repeating Sites to Accelerate Phylogenetic Likelihood Calculations , 2016, bioRxiv.

[40]  D. Dowdy,et al.  The burden of transmitted multi-drug resistance among epidemics of tuberculosis: A transmission model , 2015, The Lancet. Respiratory medicine.

[41]  Robyn S Lee,et al.  Population genomics of Mycobacterium tuberculosis in the Inuit , 2015, Proceedings of the National Academy of Sciences.

[42]  S. Sengstake,et al.  Pyrazinamide resistance in Mycobacterium tuberculosis fails to bite? , 2015, Pathogens and disease.

[43]  Alexandros Stamatakis,et al.  Short Tree, Long Tree, Right Tree, Wrong Tree: New Acquisition Bias Corrections for Inferring SNP Phylogenies , 2015, Systematic biology.

[44]  Timothy L. Tickle,et al.  Compact graphical representation of phylogenetic data and metadata with GraPhlAn , 2015, PeerJ.

[45]  F. Balloux,et al.  Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain , 2015, Nature Communications.

[46]  S. Guindon,et al.  How well can the exponential-growth coalescent approximate constant-rate birth–death population dynamics? , 2015, Proceedings of the Royal Society B: Biological Sciences.

[47]  P. Beckert,et al.  PhyResSE: a Web Tool Delineating Mycobacterium tuberculosis Antibiotic Resistance and Lineage from Whole-Genome Sequencing Data , 2015, Journal of Clinical Microbiology.

[48]  Nalin Rastogi,et al.  Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage , 2015, Nature Genetics.

[49]  S. Niemann,et al.  Mycobacterium tuberculosis Pyrazinamide Resistance Determinants: a Multicenter Study , 2014, mBio.

[50]  Emma S McBryde,et al.  Construction of a mathematical model for tuberculosis transmission in highly endemic regions of the Asia-Pacific. , 2014, Journal of theoretical biology.

[51]  Francesc Coll,et al.  A robust SNP barcode for typing Mycobacterium tuberculosis complex strains , 2014, Nature Communications.

[52]  Stefan Niemann,et al.  Whole-Genome-Based Mycobacterium tuberculosis Surveillance: a Standardized, Portable, and Expandable Approach , 2014, Journal of Clinical Microbiology.

[53]  Alexandra A. L. Pennhag,et al.  Comparison between RFLP and MIRU-VNTR Genotyping of Mycobacterium tuberculosis Strains Isolated in Stockholm 2009 to 2011 , 2014, PloS one.

[54]  Dong Xie,et al.  BEAST 2: A Software Platform for Bayesian Evolutionary Analysis , 2014, PLoS Comput. Biol..

[55]  Tim E A Peto,et al.  Assessment of Mycobacterium tuberculosis transmission in Oxfordshire, UK, 2007–12, with whole pathogen genome sequences: an observational study , 2014, The Lancet. Respiratory medicine.

[56]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[57]  E. Kurbatova,et al.  Epidemiology of pyrazinamide-resistant tuberculosis in the United States, 1999-2009. , 2013, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[58]  Marc Lipsitch,et al.  Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug resistant tuberculosis , 2013, Nature Genetics.

[59]  Marisa Klopper,et al.  Emergence and Spread of Extensively and Totally Drug-Resistant Tuberculosis, South Africa , 2013, Emerging infectious diseases.

[60]  Julian Parkhill,et al.  Inferring patient to patient transmission of Mycobacterium tuberculosis from whole genome sequencing data , 2013, BMC Infectious Diseases.

[61]  Stefan Niemann,et al.  Whole Genome Sequencing versus Traditional Genotyping for Investigation of a Mycobacterium tuberculosis Outbreak: A Longitudinal Molecular Epidemiological Study , 2013, PLoS medicine.

[62]  Daniel J. Wilson,et al.  Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study , 2013, The Lancet. Infectious diseases.

[63]  M. Chase,et al.  The mutation rate of mycobacterial repetitive unit loci in strains of M. tuberculosis from cynomolgus macaque infection , 2013, BMC Genomics.

[64]  Nigel J. Martin,et al.  SpolPred: rapid and accurate prediction of Mycobacterium tuberculosis spoligotypes from short genomic sequences , 2012, Bioinform..

[65]  G. Marks,et al.  Contact investigation for tuberculosis: a systematic review and meta-analysis , 2012, European Respiratory Journal.

[66]  Caroline O. Buckee,et al.  Digital Epidemiology , 2012, PLoS Comput. Biol..

[67]  S. Niemann,et al.  Evaluation of Mycobacterium tuberculosis Typing Methods in a 4-Year Study in Schleswig-Holstein, Northern Germany , 2011, Journal of Clinical Microbiology.

[68]  Steven J. M. Jones,et al.  Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. , 2011, The New England journal of medicine.

[69]  F. Drobniewski,et al.  Molecular Epidemiology of Mycobacterium tuberculosis , 2011 .

[70]  P. Small,et al.  Strain classification of Mycobacterium tuberculosis: congruence between large sequence polymorphisms and spoligotypes. , 2011, The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[71]  Adamandia Kapopoulou,et al.  TubercuList--10 years after. , 2011, Tuberculosis.

[72]  Jeet Sukumaran,et al.  DendroPy: a Python library for phylogenetic computing , 2010, Bioinform..

[73]  Stefan Niemann,et al.  Genotyping of Genetically Monomorphic Bacteria: DNA Sequencing in Mycobacterium tuberculosis Highlights the Limitations of Current Methodologies , 2009, PloS one.

[74]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[75]  Jeffrey R. Driscoll,et al.  Spoligotyping for molecular epidemiology of the Mycobacterium tuberculosis complex. , 2009, Methods in molecular biology.

[76]  Falk Hildebrand,et al.  Origin, Spread and Demography of the Mycobacterium tuberculosis Complex , 2008, PLoS pathogens.

[77]  Nalin Rastogi,et al.  Use of cluster-graphs from spoligotyping data to study genotype similarities and a comparison of three indices to quantify recent tuberculosis transmission among culture positive cases in French Guiana during a eight year period , 2008, BMC infectious diseases.

[78]  Nalin Rastogi,et al.  Proposal for Standardization of Optimized Mycobacterial Interspersed Repetitive Unit-Variable-Number Tandem Repeat Typing of Mycobacterium tuberculosis , 2006, Journal of Clinical Microbiology.

[79]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[80]  Jonathan Crabtree,et al.  Global Phylogeny of Mycobacterium tuberculosis Based on Single Nucleotide Polymorphism (SNP) Analysis: Insights into Tuberculosis Evolution, Phylogenetic Accuracy of Other DNA Fingerprinting Systems, and Recommendations for a Minimal Standard SNP Set , 2006, Journal of bacteriology.

[81]  O. Pybus,et al.  Bayesian coalescent inference of past population dynamics from molecular sequences. , 2005, Molecular biology and evolution.

[82]  M. Behr,et al.  Sensitivities and Specificities of Spoligotyping and Mycobacterial Interspersed Repetitive Unit-Variable-Number Tandem Repeat Typing Methods for Studying Molecular Epidemiology of Tuberculosis , 2005, Journal of Clinical Microbiology.

[83]  M. Behr,et al.  Microevolution of the Direct Repeat Region of Mycobacterium tuberculosis: Implications for Interpretation of Spoligotyping Data , 2002, Journal of Clinical Microbiology.

[84]  Claudine Médigue,et al.  Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. , 2002, Microbiology.

[85]  S. Niemann,et al.  Epidemiology of Tuberculosis in Hamburg, Germany: Long-Term Population-Based Analysis Applying Classical and Molecular Epidemiological Techniques , 2002, Journal of Clinical Microbiology.

[86]  L. O.,et al.  A Likelihood Approach to Estimating Phylogeny from Discrete Morphological Character Data , 2002 .

[87]  P. Lewis A likelihood approach to estimating phylogeny from discrete morphological character data. , 2001, Systematic biology.

[88]  M. Behr,et al.  Predictive value of contact investigation for identifying recent transmission of Mycobacterium tuberculosis. , 1998, American journal of respiratory and critical care medicine.

[89]  B. Barrell,et al.  Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence , 1998, Nature.

[90]  M. Aziz,et al.  Guidelines for surveillance of drug resistance in tuberculosis , 2009 .

[91]  C. Locht,et al.  Identification of novel intergenic repetitive units in a mycobacterial two‐component system operon , 1997, Molecular microbiology.

[92]  B. Gicquel,et al.  Evaluation of spoligotyping in a study of the transmission of Mycobacterium tuberculosis , 1997, Journal of clinical microbiology.

[93]  D van Soolingen,et al.  Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology , 1997, Journal of clinical microbiology.

[94]  G. Schoolnik,et al.  The epidemiology of tuberculosis in San Francisco. A population-based study using conventional and molecular methods. , 1994, The New England journal of medicine.

[95]  J. T. Crawford,et al.  Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology , 1993, Journal of clinical microbiology.

[96]  J. T. Crawford,et al.  IS6110, an IS-like element of Mycobacterium tuberculosis complex , 1990, Nucleic Acids Res..