Point Set Registration: Coherent Point Drift

Point set registration is a key component in many computer vision tasks. The goal of point set registration is to assign correspondences between two sets of points and to recover the transformation that maps one point set to the other. Multiple factors, including an unknown nonrigid spatial transformation, large dimensionality of point set, noise, and outliers, make the point set registration a challenging problem. We introduce a probabilistic method, called the Coherent Point Drift (CPD) algorithm, for both rigid and nonrigid point set registration. We consider the alignment of two point sets as a probability density estimation problem. We fit the Gaussian mixture model (GMM) centroids (representing the first point set) to the data (the second point set) by maximizing the likelihood. We force the GMM centroids to move coherently as a group to preserve the topological structure of the point sets. In the rigid case, we impose the coherence constraint by reparameterization of GMM centroid locations with rigid parameters and derive a closed form solution of the maximization step of the EM algorithm in arbitrary dimensions. In the nonrigid case, we impose the coherence constraint by regularizing the displacement field and using the variational calculus to derive the optimal transformation. We also introduce a fast algorithm that reduces the method computation complexity to linear. We test the CPD algorithm for both rigid and nonrigid transformations in the presence of noise, outliers, and missing points, where CPD shows accurate results and outperforms current state-of-the-art methods.

[1]  G. Wahba,et al.  Some results on Tchebycheffian spline functions , 1971 .

[2]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[3]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[4]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[5]  J. Cullum,et al.  Lanczos algorithms for large symmetric eigenvalue computations , 1985 .

[6]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Alan L. Yuille,et al.  The Motion Coherence Theory , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[8]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  G. Wahba Spline models for observational data , 1990 .

[10]  Geoffrey E. Hinton,et al.  Adaptive Elastic Models for Hand-Printed Character Recognition , 1991, NIPS.

[11]  H. C. Longuet-Higgins,et al.  An algorithm for associating the features of two images , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[12]  Leslie Greengard,et al.  The Fast Gauss Transform , 1991, SIAM J. Sci. Comput..

[13]  Glenn Stone,et al.  Computation of Thin-Plate Splines , 1991, SIAM J. Sci. Comput..

[14]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[17]  Eric Mjolsness,et al.  New Algorithms for 2D and 3D Point Matching: Pose Estimation and Correspondence , 1998, NIPS.

[18]  Anupam Joshi,et al.  On the problem of correspondence in range data and some inelastic uses for elastic nets , 1995, IEEE Trans. Neural Networks.

[19]  Tomaso A. Poggio,et al.  Regularization Theory and Neural Networks Architectures , 1995, Neural Computation.

[20]  Geoffrey E. Hinton,et al.  Using Generative Models for Handwritten Digit Recognition , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  James S. Duncan,et al.  A Robust Point Matching Algorithm for Autoradiograph Alignment , 1996, VBC.

[22]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[23]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[24]  Edwin R. Hancock,et al.  Graph Matching With a Dual-Step EM Algorithm , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  H. Chui,et al.  A feature registration framework using mixture models , 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737).

[26]  Anand Rangarajan,et al.  A new algorithm for non-rigid point matching , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[27]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[28]  Andrew W. Fitzgibbon,et al.  Robust Registration of 2D and 3D Point Sets , 2003, BMVC.

[29]  Bernhard Schölkopf,et al.  Learning with kernels , 2001 .

[30]  Edwin R. Hancock,et al.  Structural Graph Matching Using the EM Algorithm and Singular Value Decomposition , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Edwin R. Hancock,et al.  Iterative Procrustes alignment with the EM algorithm , 2002, Image Vis. Comput..

[32]  Simon Haykin,et al.  On Different Facets of Regularization Theory , 2002, Neural Computation.

[33]  Edwin R. Hancock,et al.  A unified framework for alignment and correspondence , 2003, Comput. Vis. Image Underst..

[34]  Anand Rangarajan,et al.  A new point matching algorithm for non-rigid registration , 2003, Comput. Vis. Image Underst..

[35]  Larry S. Davis,et al.  Improved fast gauss transform and efficient kernel density estimation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[36]  Alan L. Yuille,et al.  A mathematical analysis of the motion coherence theory , 1989, International Journal of Computer Vision.

[37]  Takeo Kanade,et al.  A Correlation-Based Approach to Robust Point Set Registration , 2004, ECCV.

[38]  Hongdong Li,et al.  A new and compact algorithm for simultaneously matching and estimation , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[39]  William M. Wells,et al.  Statistical Approaches to Feature-Based Object Recognition , 2004, International Journal of Computer Vision.

[40]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.

[41]  Baba C. Vemuri,et al.  A robust algorithm for point set registration using mixture of Gaussians , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[42]  Sethu Vijayakumar,et al.  A Probabilistic Approach to Robust Shape Matching , 2006, 2006 International Conference on Image Processing.

[43]  Nikos Paragios,et al.  Shape registration in implicit spaces using information theory and free form deformations , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Miguel Á. Carreira-Perpiñán,et al.  Non-rigid point set registration: Coherent Point Drift , 2006, NIPS.

[45]  Ming-Hsuan Yang,et al.  A New Affine Registration Algorithm for Matching 2D Point Sets , 2007, 2007 IEEE Workshop on Applications of Computer Vision (WACV '07).

[46]  Charles V. Stewart,et al.  Simultaneous Covariance Driven Correspondence (CDC) and Transformation Estimation in the Expectation Maximization Framework , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[47]  B. Schölkopf,et al.  Non-rigid point set registration: Coherent Point Drift , 2007 .

[48]  Andriy Myronenko,et al.  LV Motion Tracking from 3D Echocardiography Using Textural and Structural Information , 2007, MICCAI.

[49]  Andriy Myronenko,et al.  On the closed-form solution of the rotation matrix arising in computer vision problems , 2009, ArXiv.

[50]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[51]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.