Fault detection based on LP-SVR interval regression model with L1-Norm minimization

[1]  Hongye Su,et al.  Quantized Feedback Control of Fuzzy Markov Jump Systems , 2019, IEEE Transactions on Cybernetics.

[2]  Steven X. Ding,et al.  A survey on model-based fault diagnosis for linear discrete time-varying systems , 2018, Neurocomputing.

[3]  Nalin Kant Mohanty,et al.  Data mining-based high impedance fault detection using mathematical morphology , 2018, Comput. Electr. Eng..

[4]  Ian K. Craig,et al.  Model-based fault-tolerant control with robustness to unanticipated faults , 2017 .

[5]  Bin Jiang,et al.  Active fault-tolerant control against actuator fault and performance analysis of the effect of time delay due to fault diagnosis , 2017 .

[6]  K. Khorasani,et al.  Fault detection and isolation of gas turbine engines using a bank of neural networks , 2015 .

[7]  John C. Gower,et al.  The analysis of distance of grouped data with categorical variables: Categorical canonical variate analysis , 2014, J. Multivar. Anal..

[8]  Peng Shi,et al.  Novel Neural Networks-Based Fault Tolerant Control Scheme With Fault Alarm , 2014, IEEE Transactions on Cybernetics.

[9]  Tiago J. Rato,et al.  Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR) , 2013 .

[10]  Konstantinos C. Gryllias,et al.  A Support Vector Machine approach based on physical model training for rolling element bearing fault detection in industrial environments , 2012, Eng. Appl. Artif. Intell..

[11]  Sirish L. Shah,et al.  Fault detection and diagnosis in process data using one-class support vector machines , 2009 .

[12]  In-Beum Lee,et al.  Fault Detection of Non-Linear Processes Using Kernel Independent Component Analysis , 2008 .

[13]  Sachin C. Patwardhan,et al.  Plant-wide detection and diagnosis using correspondence analysis☆ , 2007 .

[14]  Igor Skrjanc,et al.  Interval Fuzzy Model Identification Using$l_infty$-Norm , 2005, IEEE Transactions on Fuzzy Systems.

[15]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[16]  Leo H. Chiang,et al.  Exploring process data with the use of robust outlier detection algorithms , 2003 .

[17]  Noboru Murata,et al.  Support vector machines with different norms: motivation, formulations and results , 2001, Pattern Recognit. Lett..

[18]  Richard D. Braatz,et al.  Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis , 2000 .

[19]  Vladimir Vapnik,et al.  An overview of statistical learning theory , 1999, IEEE Trans. Neural Networks.

[20]  Christos Georgakis,et al.  Plant-wide control of the Tennessee Eastman problem , 1995 .

[21]  E. F. Vogel,et al.  A plant-wide industrial process control problem , 1993 .

[22]  Zhihui Lai,et al.  Neighborhood preserving neural network for fault detection , 2019, Neural Networks.

[23]  Roberto Teti,et al.  Principal component analysis for feature extraction and NN pattern recognition in sensor monitoring of chip form during turning , 2014 .

[24]  Hazem Nounou,et al.  Statistical fault detection using PCA-based GLR hypothesis testing , 2013 .

[25]  Yung C. Shin,et al.  A data-based framework for fault detection and diagnostics of non-linear systems with partial state measurement , 2013, Eng. Appl. Artif. Intell..

[26]  Shigeo Abe,et al.  Decomposition techniques for training linear programming support vector machines , 2009, Neurocomputing.

[27]  C. Yoo,et al.  Nonlinear process monitoring using kernel principal component analysis , 2004 .

[28]  B. Schölkopf,et al.  Linear programs for automatic accuracy control in regression. , 1999 .