Structure and application of polarizer film for thin-film-transistor liquid crystal displays

Thin-film-transistor liquid crystal displays (TFT-LCDs) are the most popular flat panel displays now. Polarizer film is one of the most important components in the TFT-LCDs, which is a multi-layered complex film developed by the technology of stretching film with dichroic materials. In this paper, a systematic review about polarizer film used for TFT-LCDs is given. Structure, property, function and material of each layer and detailed explanations of compensation films as well as its types, especially for the twisted nematic (TN) mode LCD, are summarized. Manufacturing processes of the tri-acetyl cellulose (TAC) film and the polarizer film, attachment process of a polarizer film to a LCD panel and the key technologies in these processes are illustrated. Examples in practical applications and technology development trends in the future are also presented.

[1]  S. Sohn A new method based on application of cyclic strain to evaluate the durability of pressure sensitive adhesives , 2003 .

[2]  Shin-Tson Wu,et al.  Fundamentals of Liquid Crystal Devices , 2006 .

[3]  E. Land,et al.  Some Aspects of the Development of Sheet Polarizers , 1951 .

[4]  G. Kim,et al.  Effect of the stress relaxation property of acrylic pressure‐sensitive adhesive on light‐leakage phenomenon of polarizer in liquid crystal display , 2007 .

[5]  Tadashi Ito,et al.  Development of Low-Retardation TAC Film for Protection Films of LCD's Polarizer , 2006 .

[6]  Shin-Tson Wu,et al.  Ultrawide-view liquid crystal displays , 2005, Journal of Display Technology.

[7]  I. Benedek Pressure-Sensitive Adhesives and Applications , 2004 .

[8]  Chih-Wen Lu,et al.  Liquid Crystal Display Drivers – Techniques and Circuits , 2010 .

[9]  Hideo Takano,et al.  Cell design of gray-scale thin-film-transistor-driven liquid crystal displays , 1992, IBM J. Res. Dev..

[10]  Masayuki Satake,et al.  The Relationship of Adhesive Properties of Optical Film to Uniformity of TN-Mode LCD , 2008 .

[11]  Sang Soo Kim,et al.  66.1: Invited Paper: The World's Largest (82‐in.) TFT‐LCD , 2005 .

[12]  A. Sleight Flat panel display materials: By J. Batey and A. Chiang, P.H. Holloway (eds.). Materials Research Society, Pittsburgh, 1994, 339 pages, price $50 MRS member, $57 U.S. list, $65 foreign. ISBN 1-55899-245-6 , 1995 .

[13]  P. Yeh Leakage of light in liquid crystal displays and birefringent thin film compensators , 2009 .

[14]  Masaki Hasegawa,et al.  Alignment Technology and Applications of Liquid Crystal Devices , 2005 .

[15]  Achintya K. Bhowmik,et al.  Mobile Displays: Technology and Applications (Wiley Series in Display Technology) , 2008 .

[16]  Kazuhiko Takeuchi,et al.  45.3: Novel WV Film for Wide‐Viewing‐Angle TN‐Mode LCDs , 2006 .

[17]  Shin-Tson Wu,et al.  Reflective Liquid Crystal Displays , 2001 .

[18]  Willem den Boer,et al.  Active matrix liquid crystal displays , 2005 .

[19]  Ingo Dierking,et al.  Alignment Technologies and Applications of Liquid Crystal Devices. Liquid Crystals Book Series, Volume 5. By Kohki Takatoh, Masanori Sakamoto, Ray Hasegawa, Mitsushiro Koden, Nobuyuki Itoh and Masaki Hasegawa. , 2006 .

[20]  C. Lin Extraordinarily wide-view and high-transmittance vertically aligned liquid crystal displays , 2007 .

[21]  H. Mori The wide view (WV) film for enhancing the field of view of LCDs , 2005, Journal of Display Technology.

[22]  Hiroyuki Mori,et al.  High performance TAC film for LCDs , 2006, SPIE OPTO.

[23]  Shoji Yasuda,et al.  11.1: Invited Paper: Review of Viewing Angle Compensation of TN‐Mode LCDs Using WV Film , 2008 .

[24]  Kaoru Kusafuka,et al.  Optimum Film Compensation of Viewing Angle of Contrast in In-Plane-Switching-Mode Liquid Crystal Display , 1998 .

[25]  K. Miyasaka,et al.  PVA-Iodine complexes: Formation, structure, and properties , 1993 .

[27]  D. Song,et al.  Polarizing Films Based on Oriented Poly(vinyl alcohol)-Dichroic Dyes , 2006 .

[28]  Ji Ma,et al.  A multi-domain vertical alignment liquid crystal display to improve the V-T property , 2009, Displays.

[29]  Shin-Tson Wu,et al.  Introduction to Flat Panel Displays , 2009 .

[30]  Jang-Kun Song,et al.  Technical evolution of liquid crystal displays , 2009 .

[31]  Takahiro Sasaki,et al.  41.1: A Super‐High Image Quality Multi‐Domain Vertical Alignment LCD by New Rubbing‐Less Technology , 1998 .

[32]  Shawn Hurley,et al.  Investigation of alignment direction in wide view film and rubbing angle of twisted nematic liquid crystal display mode , 2009 .

[33]  P. Yeh Optics of Liquid Crystal Displays , 2007, 2007 Conference on Lasers and Electro-Optics - Pacific Rim.

[34]  Shin-Tson Wu,et al.  Corrections to “Analytical Solutions for Uniaxial-Film-Compensated Wide-View Liquid Crystal Displays” , 2006 .

[35]  Structure, Composition, and Vibrational Property of Iodine-Doped Polyvinyl Alcohol Studied by Temperature-Dependent I K-Edge Extended X-Ray-Absorption Fine Structure. , 1995 .

[36]  S. Sohn,et al.  The effects of NaOH and corona treatments on triacetyl cellulose and liquid crystal films used in LCD devices , 2003 .

[37]  Masahiro Ishii,et al.  Wide-viewing angle in-plane switching liquid crystal displays for television applications using optical compensation technology , 2008, J. Electronic Imaging.

[38]  K. Arakawa,et al.  32.3: Novel Optical Compensation Method Based upon a Discotic Optical Compensation Film for Wide-Viewing-Angle LCDs , 2003 .

[39]  S. Sohn,et al.  On the work of adhesion and peel strength between pressure sensitive adhesives and the polymeric films used in LCD devices , 2003 .

[40]  Ram W Sabnis,et al.  Color filter technology for liquid crystal displays , 1999 .

[41]  John W. Goodby,et al.  Handbook of liquid crystals , 1998 .

[42]  Yasuo Fujimura,et al.  Improvement of optical films for high-performance LCDs , 2003, IS&T/SPIE Electronic Imaging.

[43]  J. Foschaar,et al.  Improvement in the transmission of iodine-polyvinyl alcohol polarizers. , 1983, Applied optics.

[45]  T. Ishinabe,et al.  Wide-Viewing-Angle Polarizer with a Large Wavelength Range , 2002 .

[46]  P. Bos,et al.  Methods and Concerns of Compensating In-Plane Switching Liquid Crystal Displays , 2000 .

[47]  Taku Nakamura,et al.  Performance of a Novel Optical Compensation Film Based on Negative Birefringence of Discotic Compound for Wide-Viewing-Angle Twisted-Nematic Liquid-Crystal Displays , 1997 .

[48]  M. Hasegawa,et al.  An IPS-LCD with a high contrast ratio of over 80:1 at all viewing angles , 2007 .

[49]  S. Sohn Various ways to control the bulk properties of pressure sensitive adhesives , 2003 .

[50]  Deng-Ke Yang,et al.  Analytic expressions of optical retardation of biaxial compensation films for liquid crystal displays , 2009 .

[51]  S. Tasaka,et al.  Effects of surface modification by oxygen plasma on peel adhesion of pressure-sensitive adhesive tapes , 2000 .

[52]  Achintya K. Bhowmik,et al.  Mobile Displays: Technology and Applications , 2008 .

[53]  Yu Chun Huang,et al.  P‐85: Analysis of the Light Leakage Phenomenon at Corners of LCD Panel , 2009 .

[54]  Tadashi Ito,et al.  21.4: Development of Low‐Retardation TAC FILM for Color‐Shift Improvement in LCDs , 2006 .

[55]  Y. Saitoh,et al.  Optically Compensated In-Plane-Switching-Mode TFT-LCD Panel , 1998 .

[56]  Tokuju Oikawa,et al.  Novel WV film for wide-viewing-angle TN-mode LCDs , 2007 .

[57]  Shin-Tson Wu,et al.  Extraordinarily high-contrast and wide-view liquid-crystal displays , 2005 .

[58]  Takehiro Toyooka,et al.  Viewing angle performance of TN-LCD with hybrid aligned nematic film , 1999 .

[59]  S. Shimamoto,et al.  5.4 Properties and applications of cellulose triacetate film , 2004 .

[60]  Yasuo Fujimura,et al.  High-performance optical films for LCDs , 2004, SPIE Optics + Photonics.

[61]  C.T. Liu Revolution of the TFT LCD Technology , 2007, Journal of Display Technology.

[62]  Yung‐Kan Chen,et al.  P‐79: Light Leakage Improvement of LCD Module by Numerical Analysis , 2007 .