Quantum Symmetry Groups of Noncommutative Spheres

[1]  J. Hong,et al.  Quantum Spheres and Projective Spaces as Graph Algebras , 2002 .

[2]  F. Bonechi,et al.  Noncommutative Instantons on the 4-Sphere¶from Quantum Groups , 2000, math/0012236.

[3]  A. Sitarz Rieffel's Deformation Quantization and Isospectral Deformations , 2001, math/0102075.

[4]  G. Landi,et al.  Instanton algebras and quantum 4-spheres , 2001, math/0101177.

[5]  A. Connes C*algebras and differential geometry , 2001, hep-th/0101093.

[6]  A. Sitarz More Noncommutative 4-Spheres , 2001, math-ph/0101001.

[7]  G. Landi,et al.  Instantons on the Quantum 4-pheres S4q , 2000, math/0012103.

[8]  G. Landi,et al.  Noncommutative Manifolds, the Instanton Algebra¶and Isospectral Deformations , 2000, math/0011194.

[9]  C. Gonera,et al.  Noncommutative 4-Spheres Based on all Podleś 2-Spheres and Beyond , 2001, math/0101129.

[10]  A. Schwarz,et al.  Introduction to M(atrix) theory and noncommutative geometry , 2000, hep-th/0012145.

[11]  J. Gracia-Bond́ıa,et al.  Elements of Noncommutative Geometry , 2000 .

[12]  A. Connes A Short survey of noncommutative geometry , 2000, hep-th/0003006.

[13]  S. Woronowicz Compact quantum groups , 2000 .

[14]  A. Sitarz,et al.  The Geometry of Noncommutative Symmetries , 2000 .

[15]  T. Masuda Instantons on the Quantum 4-spheres S , 2000 .

[16]  E. Witten,et al.  String theory and noncommutative geometry , 1999, hep-th/9908142.

[17]  J. Gracia-Bond́ıa,et al.  ON THE ULTRAVIOLET BEHAVIOR OF QUANTUM FIELDS OVER NONCOMMUTATIVE MANIFOLDS , 1998, hep-th/9804001.

[18]  Timothy J. Hodges,et al.  A GUIDE TO QUANTUM GROUPS , 1997 .

[19]  H. Figueroa,et al.  A nonperturbative form of the spectral action principle in noncommutative geometry , 1997, hep-th/9701179.

[20]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[21]  Shuzhou Wang Deformations of compact quantum groups via Rieffel's quantization , 1996 .

[22]  A. Connes,et al.  Gravity coupled with matter and the foundation of non-commutative geometry , 1996, hep-th/9603053.

[23]  M. Rieffel Non-compact quantum groups associated with Abelian subgroups , 1995 .

[24]  M. Rieffel Deformation Quantization for Actions of R ]D , 1993 .

[25]  Christian Bär The Dirac operator on homogeneous spaces and its spectrum on 3-dimensional lens spaces , 1992 .

[26]  S. Levendorskii,et al.  Algebras of functions on compact quantum groups, Schubert cells and quantum tori , 1991 .

[27]  Schubert Cells,et al.  Algebras of Functions on Compact Quantum Groups , 1991 .

[28]  M. Dubois-Violette On the theory of quantum groups , 1990 .

[29]  R. Estrada,et al.  On asymptotic expansions of twisted products , 1989 .

[30]  J. Gracia-Bond́ıa,et al.  Algebras of distributions suitable for phase‐space quantum mechanics. I , 1988 .

[31]  M. Rieffel Projective Modules over Higher-Dimensional Non-Commutative Tori , 1988, Canadian Journal of Mathematics.

[32]  Stephen Slebarski THE DIRAC OPERATOR ON HOMOGENEOUS SPACES AND REPRESENTATIONS OF REDUCTIVE LIE GROUPS II , 1987 .

[33]  P. Podleś,et al.  Quantum spheres , 1987 .

[34]  Marc A. Rieffel,et al.  C∗-algebras associated with irrational rotations , 1981 .

[35]  A. Voros,et al.  An algebra of pseudodifferential operators and the asymptotics of quantum mechanics , 1978 .