Towards in situ sequencing for life detection

Due to meteoritic transfer between Earth and Mars, if life on Mars exists, it may be related to life on Earth and utilize nucleic acids as informational polymers. Thus, a Search for Extra-Terrestrial Genomes (SETG) could detect and sequence (deoxy)ribonucleic acids (DNA/RNA) utilized by any extant or recently dead life on Mars. The abiotic synthesis of common organic building blocks, such as nucleobases, sugars, and amino acids, in the solar nebula and potentially in diverse habitable environments could also bias a second genesis of life towards utilizing informational polymers similar to life as we know it. Here we build on prior work and describe the advancement of a SETG instrument to technology readiness level 4 through sample-to-sequence processing with limited manual handling. Another advance includes validation of nucleic acid extraction from Mars analogs at cell counts down to 104 per 50 mg sample, equivalent to a limit of detection of approximately 1 part per billion. In addition, we demonstrate that biological nanopore-based single molecule sequencing can be used to detect non-standard bases. Finally, we link sequence data to a statistical test to distinguish between any forward contamination and putative life beyond Earth. Nanopore-based sensing may ultimately enable characterization of non-standard polymers and other molecules, highlighting the potential for nanopore-based life detection and sequencing on Mars or other words such as the icy moons Enceladus or Europa.

[1]  S. Turner,et al.  Real-Time DNA Sequencing from Single Polymerase Molecules , 2009, Science.

[2]  Nicolas Thomas,et al.  Distribution of Mid-Latitude Ground Ice on Mars from New Impact Craters , 2009, Science.

[3]  S. Seager Exoplanet Habitability , 2013, Science.

[4]  W. Ip,et al.  Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure , 2006, Science.

[5]  I. Katz,et al.  Organic cleanliness of the Mars Science Laboratory sample transfer chain. , 2014, The Review of scientific instruments.

[6]  Michel Nuevo,et al.  Formation of uracil from the ultraviolet photo-irradiation of pyrimidine in pure H2O ices. , 2009, Astrobiology.

[7]  A. Anbar,et al.  LIFE: Life Investigation For Enceladus A Sample Return Mission Concept in Search for Evidence of Life. , 2012, Astrobiology.

[8]  Bernard P. Puc,et al.  An integrated semiconductor device enabling non-optical genome sequencing , 2011, Nature.

[9]  Carol E. Cleland,et al.  Defining ‘Life’ , 2004, Origins of life and evolution of the biosphere.

[10]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[11]  John C. Chaput,et al.  Synthetic Genetic Polymers Capable of Heredity and Evolution , 2012, Science.

[12]  Jörg Fritz,et al.  Ejection of Martian meteorites , 2005 .

[13]  Daniel R. Garalde,et al.  Highly parallel direct RNA sequencing on an array of nanopores , 2016, Nature Methods.

[14]  H. Klein The Viking biological experiments on Mars , 1978 .

[15]  E. Bergeron,et al.  PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS , 2016, 1609.08215.

[16]  Louise Jandura,et al.  Mars Science Laboratory Sample Acquisition, Sample Processing and Handling: Subsystem Design and Test Challenges , 2010 .

[17]  C. Russell,et al.  Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. , 2000, Science.

[18]  N. Pace,et al.  The universal nature of biochemistry. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Burns,et al.  The Exchange of Impact Ejecta Between Terrestrial Planets , 1996, Science.

[20]  G. Ruvkun,et al.  Life detection with the Enceladus Orbiting Sequencer , 2013, 2013 IEEE Aerospace Conference.

[21]  Charles H Lineweaver,et al.  An extensive phase space for the potential martian biosphere. , 2011, Astrobiology.

[22]  Jo Handelsman,et al.  Miniprimer PCR, a New Lens for Viewing the Microbial World , 2007, Applied and Environmental Microbiology.

[23]  Mark Brown,et al.  Advancing the search for extra-terrestrial genomes , 2016, 2016 IEEE Aerospace Conference.

[24]  M. Frith,et al.  Adaptive seeds tame genomic sequence comparison. , 2011, Genome research.

[25]  Douglas J. Botkin,et al.  Nanopore DNA Sequencing and Genome Assembly on the International Space Station , 2016, bioRxiv.

[26]  Shane Byrne,et al.  HiRISE observations of new impact craters exposing Martian ground ice , 2014 .

[27]  J. Korlach,et al.  Preparation of next-generation DNA sequencing libraries from ultra-low amounts of input DNA: Application to single-molecule, real-time (SMRT) sequencing on the Pacific Biosciences RS II , 2014, bioRxiv.

[28]  S. Humphris,et al.  Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin , 2015, Proceedings of the National Academy of Sciences.

[29]  Rachael E. Workman,et al.  Detecting DNA Methylation using the Oxford Nanopore Technologies MinION sequencer , 2016, bioRxiv.

[30]  Robert P. Davey,et al.  NanoOK: multi-reference alignment analysis of nanopore sequencing data, quality and error profiles , 2015, Bioinform..

[31]  J. McPherson,et al.  Coming of age: ten years of next-generation sequencing technologies , 2016, Nature Reviews Genetics.

[32]  Alfred S. McEwen,et al.  Spectral evidence for hydrated salts in recurring slope lineae on Mars , 2015 .

[33]  Paul D. Feldman,et al.  Transient Water Vapor at Europa’s South Pole , 2014, Science.

[34]  Eugene Kulesha,et al.  What’s in my pot? Real-time species identification on the MinION™ , 2015, bioRxiv.

[35]  Eske Willerslev,et al.  Can identification of a fourth domain of life be made from sequence data alone, and could it be done on Mars? , 2007, Astrobiology.

[36]  Alan W. Schwartz,et al.  Extraterrestrial nucleobases in the Murchison meteorite , 2008 .

[37]  Nicolas Thomas,et al.  Recurring slope lineae in equatorial regions of Mars , 2014 .

[38]  A. Yingst,et al.  A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars , 2014, Science.

[39]  Brian D. Ondov,et al.  Mash: fast genome and metagenome distance estimation using MinHash , 2015, Genome Biology.

[40]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[41]  L. F. Sarmiento,et al.  A terrestrial planet candidate in a temperate orbit around Proxima Centauri , 2016, Nature.

[42]  Mintu Porel,et al.  Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array , 2016, Proceedings of the National Academy of Sciences.

[43]  William Lincoln,et al.  Mars Biosignature - Detection Capabilities: A Method for Objective Comparison of In Situ Measurements and Sample Return , 2013 .

[44]  J P Wikswo,et al.  A low temperature transfer of ALH84001 from Mars to Earth. , 2000, Science.

[45]  G. Neukum,et al.  Cassini Observes the Active South Pole of Enceladus , 2006, Science.

[46]  C. Chyba,et al.  Possible ecosystems and the search for life on Europa. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Karen M. Jager,et al.  Martian Regolith Simulant JSC Mars-1 , 1998 .

[48]  Derrick E. Wood,et al.  Kraken: ultrafast metagenomic sequence classification using exact alignments , 2014, Genome Biology.

[49]  S. Sandford,et al.  Organic Synthesis via Irradiation and Warming of Ice Grains in the Solar Nebula , 2012, Science.

[50]  Christopher E. Carr,et al.  SETG: An instrument for detection of life on Mars ancestrally related to life on Earth , 2011, 2011 Aerospace Conference.

[51]  Alvin T. Liem,et al.  Use of Unamplified RNA/cDNA–Hybrid Nanopore Sequencing for Rapid Detection and Characterization of RNA Viruses , 2016, Emerging infectious diseases.

[52]  B. R. Tufts,et al.  Evidence for a subsurface ocean on Europa , 1998, Nature.

[53]  Makusu Tsutsui,et al.  Single-Molecule Electrical Random Resequencing of DNA and RNA , 2012, Scientific Reports.

[54]  K. Hughes,et al.  A novel Antarctic microbial endolithic community within gypsum crusts. , 2003, Environmental microbiology.

[55]  S. Benner Understanding Nucleic Acids Using Synthetic Chemistry. , 2005 .

[56]  H James Cleaves,et al.  Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases , 2011, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Edward M. Rubin,et al.  Martian Surface Paleotemperatures from Thermochronology of Meteorites , 2005 .

[58]  G. Church,et al.  The Most Conserved Genome Segments for Life Detection on Earth and Other Planets , 2008, Origins of Life and Evolution of Biospheres.

[59]  Anders Krogh,et al.  Fast and sensitive taxonomic classification for metagenomics with Kaiju , 2016, Nature Communications.

[60]  Laurent Nahon,et al.  Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs , 2016, Science.

[61]  B J Gladman,et al.  Mars Meteorite Transfer: Simulation , 1996, Science.

[62]  Andrew C. Schuerger,et al.  Biotoxicity of Mars soils: 1. Dry deposition of analog soils on microbial colonies and survival under Martian conditions , 2012 .

[63]  Michel Nuevo,et al.  Nucleobases and prebiotic molecules in organic residues produced from the ultraviolet photo-irradiation of pyrimidine in NH(3) and H(2)O+NH(3) ices. , 2012, Astrobiology.

[64]  Tomáš Vinař,et al.  DeepNano: Deep recurrent neural networks for base calling in MinION nanopore reads , 2016, PloS one.