Space QUEST mission proposal: experimentally testing decoherence due to gravity

Models of quantum systems on curved space-times lack sufficient experimental verification. Some speculative theories suggest that quantum correlations, such as entanglement, may exhibit different behavior to purely classical correlations in curved space. By measuring this effect or lack thereof, we can test the hypotheses behind several such models. For instance, as predicted by Ralph et al [] and Ralph and Pienaar [], a bipartite entangled system could decohere if each particle traversed through a different gravitational field gradient. We propose to study this effect in a ground to space uplink scenario. We extend the above theoretical predictions of Ralph and coworkers and discuss the scientific consequences of detecting/failing to detect the predicted gravitational decoherence. We present a detailed mission design of the European Space Agency’s Space QUEST (Space—Quantum Entanglement Space Test) mission, and study the feasibility of the mission scheme.

[1]  Yongmei Huang,et al.  Satellite-to-ground quantum key distribution , 2017, Nature.

[2]  Vadim Makarov,et al.  Mitigating radiation damage of single photon detectors for space applications , 2017, EPJ quantum technology.

[3]  Vadim Makarov,et al.  Laser annealing heals radiation damage in avalanche photodiodes , 2017, EPJ Quantum Technology.

[4]  Jeongwan Jin,et al.  Airborne demonstration of a quantum key distribution receiver payload , 2016, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[5]  David Edward Bruschi,et al.  Quantum communications and quantum metrology in the spacetime of a rotating planet , 2015, EPJ Quantum Technology.

[6]  Luo Sha,et al.  Generation and analysis of correlated pairs of photons on board a nanosatellite , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[7]  David Edward Bruschi,et al.  Quantum estimation of physical parameters in the spacetime of a rotating planet , 2015 .

[8]  Christian Fuchs,et al.  Ground stations for aeronautical and space laser communications at German Aerospace Center , 2015, SPIE Security + Defence.

[9]  Bryan S. Robinson,et al.  An optical receiver for the Lunar Laser Communication Demonstration based on photon-counting superconducting nanowires , 2015, Sensing Technologies + Applications.

[10]  David Edward Bruschi,et al.  Quantum estimation of the Schwarzschild spacetime parameters of the Earth , 2014, 1409.0234.

[11]  T.C.Ralph,et al.  Entanglement decoherence in a gravitational well according to the event formalism , 2014 .

[12]  R. Girard,et al.  Corrigendum: A comprehensive design and performance analysis of low Earth orbit satellite quantum communication (2013 New J. Phys. 15 023006) , 2014 .

[13]  David Edward Bruschi,et al.  Spacetime effects on satellite-based quantum communications , 2013, 1309.3088.

[14]  Christian Fuchs,et al.  DLR’s Transportable Optical Ground Station , 2013 .

[15]  Alexander Ling,et al.  Silicon avalanche photodiode operation and lifetime analysis for small satellites. , 2013, Optics express.

[16]  B. Hu,et al.  A master equation for gravitational decoherence: probing the textures of spacetime , 2013, 1305.5231.

[17]  H. Weinfurter,et al.  Air-to-ground quantum communication , 2013, Nature Photonics.

[18]  R. Laflamme,et al.  A comprehensive design and performance analysis of low Earth orbit satellite quantum communication , 2012, 1211.2733.

[19]  Eric Wille,et al.  Quantum optics experiments using the International Space Station: a proposal , 2012, 1211.2111.

[20]  G. Vallone,et al.  Impact of turbulence in long range quantum and classical communications. , 2012, Physical Review Letters.

[21]  Eric G. Cavalcanti,et al.  The preparation problem in nonlinear extensions of quantum theory , 2012 .

[22]  W. Vogel,et al.  Erratum: Entanglement transfer through the turbulent atmosphere [Phys. Rev. A81, 023835 (2010)] , 2012 .

[23]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[24]  Michael R. Vanner,et al.  Probing Planck-scale physics with quantum optics , 2011, Nature Physics.

[25]  Hong Guo,et al.  A Novel Polarization-Multiplexing System for Free-Space Optical Links , 2011, IEEE Photonics Technology Letters.

[26]  Yoon-Ho Kim,et al.  Ultra-low noise single-photon detector based on Si avalanche photodiode. , 2011, The Review of scientific instruments.

[27]  W. Vogel,et al.  Entanglement transfer through the turbulent atmosphere , 2009, 0909.2492.

[28]  J. J. Fuensalida,et al.  Adaptive optics parameters connection to wind speed at the Teide Observatory , 2009 .

[29]  Gerard J. Milburn,et al.  Quantum connectivity of space-time and gravitationally induced decorrelation of entanglement , 2009 .

[30]  C. Lämmerzahl,et al.  Metric fluctuations and decoherence , 2008, 0812.0420.

[31]  Saurya Das,et al.  Universality of quantum gravity corrections. , 2008, Physical review letters.

[32]  Paolo Villoresi,et al.  Space-quest, experiments with quantum entanglement in space , 2008, 0806.0945.

[33]  N Gisin,et al.  Spacelike separation in a Bell test assuming gravitationally induced collapses. , 2008, Physical review letters.

[34]  P. Villoresi,et al.  Experimental verification of the feasibility of a quantum channel between space and Earth , 2008, 0803.1871.

[35]  H. Weinfurter,et al.  Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[36]  Eric L. Christiansen,et al.  Space Station MMOD Shielding , 2006 .

[37]  T. G. Downes,et al.  Gravitationally Induced Decoherence of Optical Entanglement , 2006, quant-ph/0609139.

[38]  J. T. Mendonça,et al.  Quantum gravitational decoherence of matter waves , 2006, gr-qc/0603112.

[39]  Hamid Hemmati Deep Space Optical Communications: Hemmati/Deep , 2006 .

[40]  A. Kent Causal quantum theory and the collapse locality loophole (7 pages) , 2002, quant-ph/0204104.

[41]  A. Kent Nonlinearity without superluminality , 2002, quant-ph/0204106.

[42]  J. Abshire,et al.  Space-qualified silicon avalanche-photodiode single-photon-counting modules , 2004 .

[43]  Franco Zappa,et al.  Evolution and prospects for single-photon avalanche diodes and quenching circuits , 2004 .

[44]  Eric L. Christiansen,et al.  Meteoroid/Debris Shielding , 2003 .

[45]  Xiaoli Sun,et al.  Proton radiation damage of Si APD single photon counters , 2001, 2001 IEEE Radiation Effects Data Workshop. NSREC 2001. Workshop Record. Held in conjunction with IEEE Nuclear and Space Radiation Effects Conference (Cat. No.01TH8588).

[46]  H. Mannstein,et al.  Optical Ground Station , 2001 .

[47]  B. S. Kay LETTER TO THE EDITOR: Decoherence of macroscopic closed systems within Newtonian quantum gravity , 1998, hep-th/9810077.

[48]  J. Abshire,et al.  Measurement of proton radiation damage to Si avalanche photodiodes , 1997 .

[49]  Politzer Path integrals, density matrices, and information flow with closed timelike curves. , 1993, Physical review. D, Particles and fields.

[50]  Giuseppe Bianco,et al.  Matera Laser Ranging Observatory (MLRO): An overview , 1993 .

[51]  Friedman,et al.  Failure of unitarity for interacting fields on spacetimes with closed timelike curves. , 1992, Physical review. D, Particles and fields.

[52]  Boulware Quantum field theory in spaces with closed timelike curves. , 1992, Physical review. D, Particles and fields.

[53]  David C. Burnham,et al.  Observation of Simultaneity in Parametric Production of Optical Photon Pairs , 1970 .