Evaluation on Performance of Lithium-ion Batteries Based on Internal Physical and Chemical Parameters

In this work, a new method for evaluating performance of Lithium-ion batteries by finding the association between internal physical/chemical parameters and batteries’ degradation is developed. The research is divided into three stages: preparation, off-line analysis and online application. Achievements have been made on simulation model computation and simplification, parameter identification and parameter sensitivity analysis. This paper addresses the achievements and ongoing works involved in the three stages in brief.

[1]  Ralph E. White,et al.  A generalized cycle life model of rechargeable Li-ion batteries , 2006 .

[2]  A. Salkind,et al.  Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology , 1999 .

[3]  V. Subramanian,et al.  Towards real-time (milliseconds) parameter estimation of lithium-ion batteries using reformulated physics-based models , 2008 .

[4]  Heinz Wenzl,et al.  Life prediction of batteries for selecting the technically most suitable and cost effective battery , 2005 .

[5]  Heinz Wenzl,et al.  Comparison of different approaches for lifetime prediction of electrochemical systems—Using lead-acid batteries as example , 2008 .

[6]  L. Guzzella,et al.  Experiment-driven electrochemical modeling and systematic parameterization for a lithium-ion battery cell , 2010 .

[7]  Long Cai,et al.  Life modeling of a lithium ion cell with a spinel-based cathode , 2013 .

[8]  Ralph E. White,et al.  Mathematical modeling of the capacity fade of Li-ion cells , 2003 .

[9]  Ralph E. White,et al.  Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) , 2011 .

[10]  Ralph E. White,et al.  Capacity fade analysis of a lithium ion cell , 2008 .

[11]  Vinten D. Diwakar Towards efficient models for lithium ion batteries , 2009 .

[12]  Ralph E. White,et al.  Extension of Physics-Based single Particle Model for Higher Charge-Discharge Rates , 2013 .

[13]  Venkatasailanathan Ramadesigan,et al.  Coordinate Transformation, Orthogonal Collocation, Model Reformulation and Simulation of Electrochemical-Thermal Behavior of Lithium-Ion Battery Stacks , 2011 .

[14]  Long Cai,et al.  Lithium ion cell modeling using orthogonal collocation on finite elements , 2012 .

[15]  L. Guzzella,et al.  Model-based distinction and quantification of capacity loss and rate capability fade in Li-ion batteries , 2010 .

[16]  Ralph E. White,et al.  Single-Particle Model for a Lithium-Ion Cell: Thermal Behavior , 2011 .

[17]  Dirk Uwe Sauer,et al.  Ortsaufgelöste Modellbildung von Lithium-Ionen-Systemen unter spezieller Berücksichtigung der Batteriealterung , 2012 .

[18]  Ralph E. White,et al.  Determination of the hydrogen diffusion coefficient in metal hydrides by impedance spectroscopy , 1998 .

[19]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[20]  Gerardine G. Botte,et al.  Comparison of finite difference and control volume methods for solving differential equations , 2000 .

[21]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .