Recent developments in computational proteomics.

[1]  P. Y. Chou,et al.  Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. , 1974, Biochemistry.

[2]  J. Garnier,et al.  Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. , 1978, Journal of molecular biology.

[3]  D. T. Jones,et al.  A new approach to protein fold recognition , 1992, Nature.

[4]  P Argos,et al.  A method to configure protein side-chains from the main-chain trace in homology modelling. , 1993, Journal of molecular biology.

[5]  B. Rost,et al.  Prediction of protein secondary structure at better than 70% accuracy. , 1993, Journal of molecular biology.

[6]  R Abagyan,et al.  The crystal structure of an engineered monomeric triosephosphate isomerase, monoTIM: the correct modelling of an eight-residue loop. , 1993, Structure.

[7]  Christophe Geourjon,et al.  SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments , 1995, Comput. Appl. Biosci..

[8]  S. Wodak,et al.  Protein structure prediction by threading methods: Evaluation of current techniques , 1995, Proteins.

[9]  M. Vásquez,et al.  Modeling side-chain conformation. , 1996, Current opinion in structural biology.

[10]  P. Argos,et al.  Seventy‐five percent accuracy in protein secondary structure prediction , 1997, Proteins.

[11]  Jakob Bohr,et al.  Protein folding and wring resonances. , 1997, Biophysical chemistry.

[12]  J. Ponder,et al.  Protein structure prediction using a combination of sequence homology and global energy minimization: II. Energy functions , 1998 .

[13]  A. Panchenko,et al.  Threading with explicit models for evolutionary conservation of structure and sequence , 1999, Proteins.

[14]  G J Barton,et al.  Evaluation and improvement of multiple sequence methods for protein secondary structure prediction , 1999, Proteins.

[15]  D T Jones,et al.  Protein secondary structure prediction based on position-specific scoring matrices. , 1999, Journal of molecular biology.

[16]  J M Chandonia,et al.  New methods for accurate prediction of protein secondary structure , 1999, Proteins.

[17]  John C. Norvell,et al.  Structural genomics programs at the US National Institute of General Medical Sciences , 2000, Nature Structural Biology.

[18]  Yutaka Kuroda,et al.  Structural genomics projects in Japan , 2000, Nature Structural Biology.

[19]  Carlos E. Padilla,et al.  MBO(N)D: A multibody method for long‐time molecular dynamics simulations , 2000 .

[20]  Ab initio simulation of chemical shift effects from metal ion binding in Bacitracin A , 2000 .

[21]  J. Skolnick,et al.  From genes to protein structure and function: novel applications of computational approaches in the genomic era. , 2000, Trends in biotechnology.

[22]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[23]  Thomas C. Terwilliger,et al.  Structural genomics in North America , 2000, Nature Structural Biology.

[24]  Udo Heinemann,et al.  Structural genomics in Europe: Slow start, strong finish? , 2000, Nature Structural Biology.

[25]  Timothy B. Stockwell,et al.  The Sequence of the Human Genome , 2001, Science.

[26]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.