Crystal plasticity computation and atomic force microscopy analysis of the internal hydrogen-induced slip localization on polycrystalline stainless steel

[1]  N. Saintier,et al.  The effect of internal hydrogen on surface slip localisation on polycrystalline AISI 316L stainless steel , 2010 .

[2]  E. Ferrié,et al.  Numerical prediction of the cyclic behaviour of metallic polycrystals and comparison with experimental data , 2010 .

[3]  D. Delafosse,et al.  Solute-dislocation interactions: modelling and experiments in hydrogenated nickel and nickel base alloys , 2004 .

[4]  X. Feaugas On the origin of the tensile flow stress in the stainless steel AISI 316L at 300 K: Back stress and effective stress , 1999 .

[5]  P. Ferreira,et al.  Hydrogen effects on the interaction between dislocations , 1998 .

[6]  J. Hermida,et al.  X-Ray diffraction measurement of the stacking fault energy reduction induced by hydrogen in an AISI 304 steel , 1997 .

[7]  D. Abraham,et al.  The effect of hydrogen on the yield and flow stress of an austenitic stainless steel , 1995 .

[8]  D. Abraham,et al.  Hydrogen-enhanced localization of plasticity in an austenitic stainless steel , 1995 .

[9]  C. Altstetter,et al.  Hydrogen-induced strain localization and failure of austenitic stainless steels at high hydrogen concentrations , 1991 .

[10]  H. Kanayama,et al.  One-Way Coupled Crystal Plasticity-Hydrogen Diffusion Simulation on Artificial Microstructure , 2010 .

[11]  P. Sofronis,et al.  Chapter 91 Hydrogen Effects on Plasticity , 2009 .

[12]  Russel H. Jones,et al.  Environment-induced cracking of materials , 2008 .

[13]  P. Sofronis,et al.  Mechanics of the hydrogendashdislocationdashimpurity interactions-I. Increasing shear modulus , 1995 .

[14]  G. Cailletaud,et al.  Single Crystal Modeling for Structural Calculations: Part 2—Finite Element Implementation , 1991 .

[15]  F. Nabarro,et al.  Dislocations in solids , 1979 .