Miniaturised technologies for the development of artificial lipid bilayer systems.

Artificially reproducing cellular environments is a key aim of synthetic biology, which has the potential to greatly enhance our understanding of cellular mechanisms. Microfluidic and lab-on-a-chip (LOC) techniques, which enable the controlled handling of sub-microlitre volumes of fluids in an automated and high-throughput manner, can play a major role in achieving this by offering alternative and powerful methodologies in an on-chip format. Such techniques have been successfully employed over the last twenty years to provide innovative solutions for chemical analysis and cell-, molecular- and synthetic- biology. In the context of the latter, the formation of artificial cell membranes (or artificial lipid bilayers) that incorporate membrane proteins within miniaturised LOC architectures offers huge potential for the development of highly sensitive molecular sensors and drug screening applications. The aim of this review is to give a comprehensive and critical overview of the field of microsystems for creating and exploiting artificial lipid bilayers. Advantages and limitations of three of the most popular approaches, namely suspended, supported and droplet-based lipid bilayers, are discussed. Examples are reported that show how artificial cell membrane microsystems, by combining together biological procedures and engineering techniques, can provide novel methodologies for basic biological and biophysical research and for the development of biotechnology tools.

[1]  A. Manz,et al.  Lab-on-a-chip: microfluidics in drug discovery , 2006, Nature Reviews Drug Discovery.

[2]  Michael George,et al.  High-resolution electrophysiology on a chip: Transient dynamics of alamethicin channel formation. , 2006, Biochimica et biophysica acta.

[3]  Stephan Herminghaus,et al.  Bilayer membranes in micro-fluidics: from gel emulsions to functional devices , 2010, 1008.1972.

[4]  Shoji Takeuchi,et al.  Microtechnologies for membrane protein studies , 2008, Analytical and bioanalytical chemistry.

[5]  H. Ti Tien,et al.  Electrochemistry of supported bilayer lipid membranes: background and techniques for biosensor development , 1997 .

[6]  G. Whitesides,et al.  Soft lithography for micro- and nanoscale patterning , 2010, Nature Protocols.

[7]  H. T. Tien,et al.  The bilayer lipid membrane (BLM) under electrical fields , 2003 .

[8]  Horst Vogel,et al.  Chip based biosensor for functional analysis of single ion channels , 2000 .

[9]  Terry C. Chilcott,et al.  Electrical impedance spectroscopy characterisation of conducting membranes: II. Experimental , 2002 .

[10]  Aya Eid,et al.  Light-driven formation and rupture of droplet bilayers. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[11]  R. Zengerle,et al.  Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. , 2010, Chemical Society reviews.

[12]  William L. Hwang,et al.  Droplet interface bilayers. , 2008, Molecular bioSystems.

[13]  Marek Langner,et al.  Fluorescence Techniques for Determination of the Membrane Potentials in High Throughput Screening , 2010, Journal of Fluorescence.

[14]  Robert H Blick,et al.  Microstructured apertures in planar glass substrates for ion channel research. , 2003, Receptors & channels.

[15]  Anthony Watts,et al.  Channel activity of a viral transmembrane peptide in micro-BLMs: Vpu(1-32) from HIV-1. , 2004, Journal of the American Chemical Society.

[16]  Ingo Köper,et al.  Insulating tethered bilayer lipid membranes to study membrane proteins. , 2007, Molecular bioSystems.

[17]  James Frederic Danielli,et al.  Some properties of lipoid films in relation to the structure of the plasma membrane , 1936 .

[18]  Peter Lenz,et al.  Patterned supported lipid bilayers and monolayers on poly(dimethylsiloxane). , 2004, Langmuir : the ACS journal of surfaces and colloids.

[19]  Susan Daniel,et al.  Single ion-channel recordings using glass nanopore membranes. , 2007, Journal of the American Chemical Society.

[20]  Christine Williams,et al.  Patch clamping by numbers. , 2004, Drug discovery today.

[21]  Tomaso Zambelli,et al.  Techniques for recording reconstituted ion channels. , 2011, The Analyst.

[22]  Cheng-han Yu,et al.  Engineering supported membranes for cell biology , 2010, Medical & Biological Engineering & Computing.

[23]  S. Boxer,et al.  DNA-tethered membranes formed by giant vesicle rupture. , 2009, Journal of structural biology.

[24]  Lance Kam and,et al.  Formation of Supported Lipid Bilayer Composition Arrays by Controlled Mixing and Surface Capture , 2000 .

[25]  Shoji Takeuchi,et al.  Microfluidic lipid membrane formation on microchamber arrays. , 2011, Lab on a chip.

[26]  F Bezanilla,et al.  Bilayer reconstitution of voltage-dependent ion channels using a microfabricated silicon chip. , 2001, Biophysical journal.

[27]  Erich Sackmann,et al.  Electrical properties of supported lipid bilayer membranes , 2002 .

[28]  Toru Ide,et al.  A novel method for artificial lipid-bilayer formation. , 2005, Biosensors & bioelectronics.

[29]  L. Tamm,et al.  Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers. , 1992, Biochimica et biophysica acta.

[30]  F S Cohen,et al.  Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. I. Discharge of vesicular contents across the planar membrane , 1980, The Journal of general physiology.

[31]  Heather Tye Application of statistical 'design of experiments' methods in drug discovery. , 2004, Drug discovery today.

[32]  J. Hall,et al.  Role of channels in the fusion of vesicles with a planar bilayer. , 1988, Biophysical journal.

[33]  C. Miller,et al.  KcsA: it's a potassium channel. , 2001, The Journal of general physiology.

[34]  D. Leckband,et al.  Intermolecular forces in biology , 2001, Quarterly Reviews of Biophysics.

[35]  Michael George,et al.  Rapid screening of membrane protein activity: electrophysiological analysis of OmpF reconstituted in proteoliposomes. , 2008, Lab on a chip.

[36]  George M Whitesides,et al.  Microfabricated teflon membranes for low-noise recordings of ion channels in planar lipid bilayers. , 2003, Biophysical journal.

[37]  E. Sackmann,et al.  Supported membranes on soft polymer cushions: fabrication, characterization and applications. , 2000, Trends in biotechnology.

[38]  Hywel Morgan,et al.  Binding of anionic lipids to at least three nonannular sites on the potassium channel KcsA is required for channel opening. , 2008, Biophysical journal.

[39]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[40]  James K. Gimzewski,et al.  An artificial nose based on a micromechanical cantilever array , 1999 .

[41]  Hywel Morgan,et al.  Controlled delivery of proteins into bilayer lipid membranes on chip. , 2007, Lab on a chip.

[42]  Martin Andersson,et al.  Voltage-induced gating of the mechanosensitive MscL ion channel reconstituted in a tethered lipid bilayer membrane. , 2008, Biosensors & bioelectronics.

[43]  A. Manz,et al.  Micro total analysis systems. Recent developments. , 2004, Analytical chemistry.

[44]  Toru Ide,et al.  Simultaneous optical and electrical recording of single molecule bonding to single channel proteins. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[45]  Hiroshi Masuhara,et al.  Groove-spanning behavior of lipid membranes on microfabricated silicon substrates. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[46]  Tae-Joon Jeon,et al.  Electrowetting on dielectric-based microfluidics for integrated lipid bilayer formation and measurement , 2009 .

[47]  Yves F Dufrêne,et al.  Nanoscale analysis of supported lipid bilayers using atomic force microscopy. , 2010, Biochimica et biophysica acta.

[48]  Erik Reimhult,et al.  Membrane biosensor platforms using nano- and microporous supports. , 2008, Trends in biotechnology.

[49]  William L. Hwang,et al.  Screening blockers against a potassium channel with a droplet interface bilayer array. , 2008, Journal of the American Chemical Society.

[50]  Mengsu Yang,et al.  Microfluidics technology for manipulation and analysis of biological cells , 2006 .

[51]  Claudia Steinem,et al.  Channel activity of OmpF monitored in nano-BLMs. , 2006, Biophysical journal.

[52]  Vincent Noireaux,et al.  A vesicle bioreactor as a step toward an artificial cell assembly. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[53]  William L. Hwang,et al.  Asymmetric droplet interface bilayers. , 2008, Journal of the American Chemical Society.

[54]  Fredrik Höök,et al.  Intact Vesicle Adsorption and Supported Biomembrane Formation from Vesicles in Solution: Influence of Surface Chemistry, Vesicle Size, Temperature, and Osmotic Pressure† , 2003 .

[55]  H. Bayley,et al.  A storable encapsulated bilayer chip containing a single protein nanopore. , 2007, Journal of the American Chemical Society.

[56]  Shoji Takeuchi,et al.  Highly reproducible method of planar lipid bilayer reconstitution in polymethyl methacrylate microfluidic chip. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[57]  Drechsler,et al.  A cantilever array-based artificial nose , 2000, Ultramicroscopy.

[58]  João G. Crespo,et al.  Electrical impedance spectroscopy characterisation of supported ionic liquid membranes , 2006 .

[59]  Oleg V Batishchev,et al.  Alkylated glass partition allows formation of solvent-free lipid bilayer by Montal-Mueller technique. , 2008, Bioelectrochemistry.

[60]  G. Whitesides,et al.  Applications of microfluidics in chemical biology. , 2006, Current opinion in chemical biology.

[61]  Jeffrey J Clare,et al.  Targeting voltage-gated sodium channels for pain therapy , 2010, Expert opinion on investigational drugs.

[62]  Ami Chand,et al.  Atomic force microscopy imaging and electrical recording of lipid bilayers supported over microfabricated silicon chip nanopores: lab-on-a-chip system for lipid membranes and ion channels. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[63]  Horst Vogel,et al.  HIGHLY ELECTRICALLY INSULATING TETHERED LIPID BILAYERS FOR PROBING THE FUNCTION OF ION CHANNEL PROTEINS , 2003 .

[64]  H Morgan,et al.  Microfluidic array platform for simultaneous lipid bilayer membrane formation. , 2009, Biosensors & bioelectronics.

[65]  Paul S. Cremer,et al.  Solid supported lipid bilayers: From biophysical studies to sensor design , 2006, Surface Science Reports.

[66]  H. Bayley,et al.  Direct transfer of membrane proteins from bacteria to planar bilayers for rapid screening by single-channel recording , 2006, Nature chemical biology.

[67]  Hywel Morgan,et al.  Formation of artificial lipid bilayers using droplet dielectrophoresis. , 2008, Lab on a chip.

[68]  Kevin Critchley,et al.  Supported bilayer lipid membrane arrays on photopatterned self-assembled monolayers. , 2007, Chemistry.

[69]  Martin Andersson,et al.  Detection of single ion channel activity on a chip using tethered bilayer membranes. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[70]  D E Koshland,et al.  The role of calcium in fusion of artificial vesicles. , 1978, The Journal of biological chemistry.

[71]  Shoji Takeuchi,et al.  Multichannel simultaneous measurements of single-molecule translocation in alpha-hemolysin nanopore array. , 2009, Analytical chemistry.

[72]  Seung-Yong Jung,et al.  Creating fluid and air-stable solid supported lipid bilayers. , 2004, Journal of the American Chemical Society.

[73]  Erich Sackmann,et al.  Polymer-supported membranes as models of the cell surface , 2005, Nature.

[74]  Robert Langer,et al.  A BioMEMS review: MEMS technology for physiologically integrated devices , 2004, Proceedings of the IEEE.

[75]  David M. Bloom,et al.  Ion Channels and Lipid Bilayer Membranes Under High Potentials Using Microfabricated Apertures , 2002 .

[76]  Eric Lesniewska,et al.  Surface Topography of Membrane Domains , 2022 .

[77]  Ingo Köper,et al.  Tethered bilayer lipid membranes with giga-ohm resistances , 2008 .

[78]  Daniela Weiskopf,et al.  Micro-BLMs on highly ordered porous silicon substrates: rupture process and lateral mobility. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[79]  D. Beebe,et al.  Controlled microfluidic interfaces , 2005, Nature.

[80]  Jay L Nadeau,et al.  Reconstitution of ion channels in agarose-supported silicon orifices. , 2007, Biosensors & bioelectronics.

[81]  Andreas Offenhäusser,et al.  Membrane on a chip: a functional tethered lipid bilayer membrane on silicon oxide surfaces. , 2005, Biophysical journal.

[82]  M. Wallace,et al.  Determining membrane capacitance by dynamic control of droplet interface bilayer area. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[83]  Mathias Winterhalter,et al.  Miniaturized planar lipid bilayer: increased stability, low electric noise and fast fluid perfusion , 2008, Analytical and bioanalytical chemistry.

[84]  H. Ti Tien,et al.  METHODS FOR THE FORMATION OF SINGLE BIMOLECULAR LIPID MEMBRANES IN AQUEOUS SOLUTION , 1963 .

[85]  Manu Sebastian Mannoor,et al.  BioMEMS –Advancing the Frontiers of Medicine , 2008, Sensors.

[86]  N. Melosh,et al.  Silicon chip-based patch-clamp electrodes integrated with PDMS microfluidics. , 2004, Biosensors & bioelectronics.

[87]  A. J. deMello,et al.  A microfluidic approach for high-throughput droplet interface bilayer (DIB) formation. , 2010, Chemical communications.

[88]  A. Theberge,et al.  Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. , 2010, Angewandte Chemie.

[89]  Rashid Bashir,et al.  BioMEMS: state-of-the-art in detection, opportunities and prospects. , 2004, Advanced drug delivery reviews.

[90]  Hywel Morgan,et al.  Micromachined glass apertures for artificial lipid bilayer formation in a microfluidic system , 2007 .

[91]  A. Steckl,et al.  Voltage control of droplet interface bilayer lipid membrane dimensions. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[92]  Michael A Nash,et al.  Automated formation of lipid-bilayer membranes in a microfluidic device. , 2006, Nano letters.

[93]  Mark Perry,et al.  Biomimetic membrane arrays on cast hydrogel supports. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[94]  S. Boxer,et al.  Micropattern formation in supported lipid membranes. , 2002, Accounts of chemical research.

[95]  Françoise Brochard-Wyart,et al.  Vesicles surfing on a lipid bilayer: Self-induced haptotactic motion , 2006, Proceedings of the National Academy of Sciences.

[96]  Claudia Steinem,et al.  Pore-Suspending Lipid Bilayers on Porous Alumina Investigated by Electrical Impedance Spectroscopy , 2003 .

[97]  S. Boxer,et al.  A membrane interferometer , 2009, Proceedings of the National Academy of Sciences.

[98]  T. Haines,et al.  Water transport across biological membranes , 1994, FEBS letters.

[99]  Masayuki Fujihara,et al.  Dynamics of the spontaneous formation of a planar phospholipid bilayer: A new approach by simultaneous electrical and optical measurements , 2003 .

[100]  Hiroaki Suzuki,et al.  Planar lipid bilayer reconstitution with a micro-fluidic system. , 2004, Lab on a chip.

[101]  Luke P. Lee,et al.  Integrated multiple patch-clamp array chip via lateral cell trapping junctions , 2004 .

[102]  Ananth Dodabalapur,et al.  Formation of tethered bilayer lipid membranes on gold surfaces: QCM-Z and AFM study. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[103]  Hao Jiang,et al.  Polymer–Silicon Flexible Structures for Fast Chemical Vapor Detection , 2007 .

[104]  Yumi Yoshida,et al.  Ion transport across a bilayer lipid membrane facilitated by valinomycin , 2004 .

[105]  J. Vörös,et al.  Liposome and lipid bilayer arrays towards biosensing applications. , 2010, Small.

[106]  F S Cohen,et al.  Parameters affecting the fusion of unilamellar phospholipid vesicles with planar bilayer membranes , 1984, The Journal of cell biology.

[107]  Andreas Schmid,et al.  Chemical and biological single cell analysis. , 2010, Current opinion in biotechnology.

[108]  Youxing Jiang,et al.  Crystal structure and mechanism of a calcium-gated potassium channel , 2002, Nature.

[109]  Luke P. Lee,et al.  A single cell electroporation chip. , 2005, Lab on a chip.

[110]  C. Trautmann,et al.  Microstructured glass chip for ion-channel electrophysiology. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[111]  T. Moore,et al.  Mimicking photosynthetic solar energy transduction. , 2001, Accounts of chemical research.

[112]  Hywel Morgan,et al.  Air-exposure technique for the formation of artificial lipid bilayers in microsystems. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[113]  Thomas Thundat,et al.  Label-free sugar detection using phenylboronic acid-functionalized piezoresistive microcantilevers. , 2008, Analytical chemistry.

[114]  Kevin Critchley,et al.  A novel method to fabricate patterned bilayer lipid membranes. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[115]  Quan Cheng,et al.  Immunosensing of Staphylococcus enterotoxin B (SEB) in milk with PDMS microfluidic systems using reinforced supported bilayer membranes (r-SBMs). , 2006, Lab on a chip.

[116]  Ying Zhang,et al.  Artificial cells: building bioinspired systems using small-scale biology. , 2008, Trends in biotechnology.

[117]  Ingo Köper,et al.  Functional incorporation of the pore forming segment of AChR M2 into tethered bilayer lipid membranes. , 2007, Biochimica et biophysica acta.

[118]  Claudia Steinem,et al.  Impedance analysis and single-channel recordings on nano-black lipid membranes based on porous alumina. , 2004, Biophysical journal.

[119]  Shoji Takeuchi,et al.  Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. , 2006, Analytical chemistry.

[120]  Ralf Richter,et al.  QCM-D and reflectometry instrument: applications to supported lipid structures and their biomolecular interactions. , 2009, Analytical chemistry.

[121]  Fred J Sigworth,et al.  Microfluidic system for planar patch clamp electrode arrays. , 2006, Nano letters.

[122]  H. Mao,et al.  Fabrication of phospholipid bilayer-coated microchannels for on-chip immunoassays. , 2001, Analytical chemistry.

[123]  Tae-Joon Jeon,et al.  Hydrogel-encapsulated lipid membranes. , 2006, Journal of the American Chemical Society.

[124]  Dietmar Pum,et al.  New method for generating tetraether lipid membranes on porous supports , 2003 .

[125]  Daeyeon Lee,et al.  Double emulsion templated monodisperse phospholipid vesicles. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[126]  Ingo Köper,et al.  Functional Ion Channels in Tethered Bilayer Membranes—Implications for Biosensors , 2007, Chembiochem : a European journal of chemical biology.

[127]  Thomas A. Moore,et al.  Mimicking bacterial photosynthesis , 1998 .

[128]  Paul S. Cremer,et al.  Formation and Spreading of Lipid Bilayers on Planar Glass Supports , 1999 .

[129]  Shoji Takeuchi,et al.  Lipid bilayer microarray for parallel recording of transmembrane ion currents. , 2008, Analytical chemistry.

[130]  T G Clark,et al.  Creating biological membranes on the micron scale: forming patterned lipid bilayers using a polymer lift-off technique. , 2003, Biophysical journal.

[131]  Michele Zagnoni,et al.  A microdroplet-based shift register. , 2010, Lab on a chip.

[132]  G. Whitesides,et al.  Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. , 2003, Analytical chemistry.

[133]  S. Boxer,et al.  Patterning and Composition Arrays of Supported Lipid Bilayers by Microcontact Printing , 2001 .

[134]  F S Cohen,et al.  Osmotic swelling of vesicles: its role in the fusion of vesicles with planar phospholipid bilayer membranes and its possible role in exocytosis. , 1986, Annual review of physiology.

[135]  Peter Fromherz,et al.  Giant lipid vesicles impaled with glass microelectrodes: GigaOhm seal by membrane spreading. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[136]  M Montal,et al.  Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[137]  Christopher Miller,et al.  Single Streptomyces lividans K+ Channels: Functional Asymmetries and Sidedness of Proton Activation , 1999 .

[138]  Tom L. Blundell,et al.  Keynote review: Structural biology and drug discovery , 2005 .

[139]  David Needham,et al.  Functional bionetworks from nanoliter water droplets. , 2007, Journal of the American Chemical Society.

[140]  Hiroaki Suzuki,et al.  Ninety-six-well planar lipid bilayer chip for ion channel recording Fabricated by hybrid stereolithography , 2009, Biomedical microdevices.

[141]  H. Tien,et al.  Black lipid films in aqueous media: A new type of interfacial phenomenon , 1966 .

[142]  L. P. Hromada,et al.  Single molecule measurements within individual membrane-bound ion channels using a polymer-based bilayer lipid membrane chip. , 2008, Lab on a chip.

[143]  J. Garnaes,et al.  Langmuir-Blodgett films. , 1994, Science.

[144]  Hugh Davson,et al.  A contribution to the theory of permeability of thin films , 1935 .

[145]  Frédéric Pincet,et al.  Giant vesicles formed by gentle hydration and electroformation: a comparison by fluorescence microscopy. , 2005, Colloids and surfaces. B, Biointerfaces.

[146]  H. Bayley,et al.  Simultaneous measurement of ionic current and fluorescence from single protein pores. , 2009, Journal of the American Chemical Society.

[147]  Robert H Blick,et al.  Whole cell patch clamp recording performed on a planar glass chip. , 2002, Biophysical journal.

[148]  G. Schütz,et al.  Simultaneous optical and electrical recording of single gramicidin channels. , 2003, Biophysical journal.

[149]  Thomas A. Moore,et al.  Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane , 1998, Nature.

[150]  Hywel Morgan,et al.  Bilayer lipid membranes from falling droplets , 2009, Analytical and bioanalytical chemistry.

[151]  Terry C. Chilcott,et al.  Electrical impedance spectroscopy characterisation of conducting membranes I. Theory , 2002 .

[152]  Matthew A Cooper,et al.  Advances in membrane receptor screening and analysis , 2004, Journal of molecular recognition : JMR.

[153]  S M Goodnick,et al.  Integrated electrodes on a silicon based ion channel measurement platform. , 2007, Biosensors & bioelectronics.

[154]  Dominique Collard,et al.  MEMS technology for nanobio research. , 2008, Drug discovery today.

[155]  Michio Niwano,et al.  The design of molecular sensing interfaces with lipid-bilayer assemblies , 2008 .

[156]  Tae-Joon Jeon,et al.  Long‐Lived Planar Lipid Bilayer Membranes Anchored to an In Situ Polymerized Hydrogel , 2008 .

[157]  R. Peri,et al.  High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology , 2008, Nature Reviews Drug Discovery.

[158]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .