Analysis of advanced technology nodes and h-NA EUV introduction: a cost perspective
暂无分享,去创建一个
Geert Hellings | Julien Ryckaert | Pieter Weckx | Alessio Spessot | Kurt Ronse | Darko Trivkovic | Gioele Mirabelli | Jane Wang | Ryoung Han Kim | A. Spessot | J. Ryckaert | D. Trivkovic | P. Weckx | G. Hellings | G. Mirabelli | R. Kim | K. Ronse | Jane Wang
[1] G.E. Moore,et al. Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.
[2] Diederik Verkest,et al. Maintaining Moore’s law: enabling cost-friendly dimensional scaling , 2015, Advanced Lithography.
[3] J. Ryckaert,et al. Extreme scaling enabled by 5 tracks cells: Holistic design-device co-optimization for FinFETs and lateral nanowires , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).
[4] J. Ryckaert,et al. Stacked nanosheet fork architecture for SRAM design and device co-optimization toward 3nm , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).
[5] Christopher J. Wilson,et al. High-Aspect-Ratio Ruthenium Lines for Buried Power Rail , 2018, 2018 IEEE International Interconnect Technology Conference (IITC).
[6] Diederik Verkest,et al. Standard-cell design architecture options below 5nm node: The ultimate scaling of FinFET and Nanosheet , 2019, Advanced Lithography.
[7] Christopher J. Wilson,et al. Semidamascene Interconnects for 2nm node and Beyond , 2020, 2020 IEEE International Interconnect Technology Conference (IITC).
[8] Christopher J. Wilson,et al. Buried Power Rail Integration With FinFETs for Ultimate CMOS Scaling , 2020, IEEE Transactions on Electron Devices.
[9] Judon Stoeldraijer,et al. High-NA EUV lithography exposure tool: key advantages and program progress , 2021 .
[10] H. Mertens,et al. Forksheet FETs for Advanced CMOS Scaling: Forksheet-Nanosheet Co-Integration and Dual Work Function Metal Gates at 17nm N-P Space , 2021, 2021 Symposium on VLSI Technology.