Epitaxial Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Growth Mechanism, Controllability, and Scalability.

Recently there have been many research breakthroughs in two-dimensional (2D) materials including graphene, boron nitride (h-BN), black phosphors (BPs), and transition-metal dichalcogenides (TMDCs). The unique electrical, optical, and thermal properties in 2D materials are associated with their strictly defined low dimensionalities. These materials provide a wide range of basic building blocks for next-generation electronics. The chemical vapor deposition (CVD) technique has shown great promise to generate high-quality TMDC layers with scalable size, controllable thickness, and excellent electronic properties suitable for both technological applications and fundamental sciences. The capability to precisely engineer 2D materials by chemical approaches has also given rise to fascinating new physics, which could lead to exciting new applications. In this Review, we introduce the latest development of TMDC synthesis by CVD approaches and provide further insight for the controllable and reliable synthesis of atomically thin TMDCs. Understanding of the vapor-phase growth mechanism of 2D TMDCs could benefit the formation of complicated heterostructures and novel artificial 2D lattices.

[1]  M. Vitiello,et al.  The role of surface chemical reactivity in the stability of electronic nanodevices based on two-dimensional materials "beyond graphene" and topological insulators , 2018, 1805.00729.

[2]  Lain‐Jong Li,et al.  Band Alignment of 2D Transition Metal Dichalcogenide Heterojunctions , 2017 .

[3]  S. Lau,et al.  Liquid-phase exfoliation of black phosphorus and its applications , 2017 .

[4]  Lijun Liang,et al.  Theoretical study on the interaction of nucleotides on two-dimensional atomically thin graphene and molybdenum disulfide , 2017 .

[5]  Edwin O. Ortiz-Quiles,et al.  Exfoliated molybdenum disulfide for dye sensitized solar cells , 2017 .

[6]  S. Lau,et al.  High‐Electron‐Mobility and Air‐Stable 2D Layered PtSe2 FETs , 2017, Advanced materials.

[7]  Wei Liu,et al.  Chemical Vapor Deposition of Large-Size Monolayer MoSe2 Crystals on Molten Glass. , 2017, Journal of the American Chemical Society.

[8]  M. Chou,et al.  Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers , 2017, Science Advances.

[9]  E. Flahaut,et al.  A comparative study on few-layer graphene production by exfoliation of different starting materials in a low boiling point solvent , 2017 .

[10]  Austin C. Faucett,et al.  Evolution, structure, and electrical performance of voltage-reduced graphene oxide , 2017 .

[11]  Ritu Sharma,et al.  Investigation on effect of boron and nitrogen substitution on electronic structure of graphene , 2017 .

[12]  S. Chatterjee,et al.  Hydrothermally reduced nano porous graphene–polyaniline nanofiber composites for supercapacitor , 2017 .

[13]  Peng Li,et al.  Laterally Stitched Heterostructures of Transition Metal Dichalcogenide: Chemical Vapor Deposition Growth on Lithographically Patterned Area. , 2016, ACS nano.

[14]  D. Muller,et al.  Large-scale chemical assembly of atomically thin transistors and circuits. , 2016, Nature nanotechnology.

[15]  Jing Kong,et al.  Synthesis of High‐Quality Large‐Area Homogenous 1T′ MoTe2 from Chemical Vapor Deposition , 2016, Advanced materials.

[16]  T. Zhai,et al.  Chemical Vapor Deposition Synthesis of Ultrathin Hexagonal ReSe2 Flakes for Anisotropic Raman Property and Optoelectronic Application , 2016, Advanced materials.

[17]  J. Hao,et al.  Progress in pulsed laser deposited two-dimensional layered materials for device applications , 2016 .

[18]  S. Sanvito,et al.  Dimensionality-driven phonon softening and incipient charge density wave instability in TiS2 , 2016 .

[19]  Yanrong Li,et al.  Vertically oriented few-layered HfS2 nanosheets: growth mechanism and optical properties , 2016 .

[20]  Feifei Lan,et al.  Synthesis of Vertically Standing MoS2 Triangles on SiC , 2016, Scientific Reports.

[21]  C. Su,et al.  Scalable Patterning of MoS2 Nanoribbons by Micromolding in Capillaries. , 2016, ACS applied materials & interfaces.

[22]  M. Iqbal,et al.  Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method , 2016, Scientific Reports.

[23]  G. Gao,et al.  Thermoelectric properties of monolayer MSe2 (M = Zr, Hf): low lattice thermal conductivity and a promising figure of merit , 2016, Nanotechnology.

[24]  Xiao Zhang,et al.  Solution‐Processed Two‐Dimensional Metal Dichalcogenide‐Based Nanomaterials for Energy Storage and Conversion , 2016, Advanced materials.

[25]  H. Wong,et al.  High Current Density and Low Thermal Conductivity of Atomically Thin Semimetallic WTe2. , 2016, ACS nano.

[26]  Ming-Yang Li,et al.  Heterostructures based on two-dimensional layered materials and their potential applications , 2016 .

[27]  J. Xiong,et al.  Booming Development of Group IV–VI Semiconductors: Fresh Blood of 2D Family , 2016, Advanced science.

[28]  T. Hou,et al.  Large-area few-layer MoS2 deposited by sputtering , 2016 .

[29]  Emily F. Smith,et al.  Quantum confinement and photoresponsivity of β-In2Se3 nanosheets grown by physical vapour transport , 2016 .

[30]  Martin Pumera,et al.  Layered Platinum Dichalcogenides (PtS2, PtSe2, and PtTe2) Electrocatalysis: Monotonic Dependence on the Chalcogen Size , 2016 .

[31]  Feng Gao,et al.  Sensitive Electronic-Skin Strain Sensor Array Based on the Patterned Two-Dimensional α-In2Se3 , 2016 .

[32]  V. Dravid,et al.  Growth Mechanism of Transition Metal Dichalcogenide Monolayers: The Role of Self-Seeding Fullerene Nuclei. , 2016, ACS nano.

[33]  N. Xu,et al.  Monolayer MoS2 Dendrites on a Symmetry‐Disparate SrTiO3 (001) Substrate: Formation Mechanism and Interface Interaction , 2016 .

[34]  F. Xia,et al.  Optoelectronic devices based on two-dimensional transition metal dichalcogenides , 2016, Nano Research.

[35]  J. Warner,et al.  Generalized Mechanistic Model for the Chemical Vapor Deposition of 2D Transition Metal Dichalcogenide Monolayers. , 2016, ACS nano.

[36]  Peng Yu,et al.  Extraordinarily Strong Interlayer Interaction in 2D Layered PtS2 , 2016, Advanced materials.

[37]  Zhongfan Liu,et al.  Periodic Modulation of the Doping Level in Striped MoS₂ Superstructures. , 2016, ACS nano.

[38]  Á. Rubio,et al.  Anisotropic electronic, mechanical, and optical properties of monolayer WTe2 , 2016 .

[39]  S. Du,et al.  Few-layer SnSe2 transistors with high on/off ratios , 2016 .

[40]  M. Dresselhaus,et al.  Parallel Stitching of 2D Materials , 2015, Advanced materials.

[41]  J. M. Kikkawa,et al.  Monolayer Single-Crystal 1 T ′-MoTe 2 Grown by Chemical Vapor Deposition Exhibits Weak Antilocalization , 2016 .

[42]  Y. Bando,et al.  Ultrathin SnSe2 Flakes Grown by Chemical Vapor Deposition for High‐Performance Photodetectors , 2015, Advanced materials.

[43]  Kai Xu,et al.  Ultrasensitive Phototransistors Based on Few‐Layered HfS2 , 2015, Advanced materials.

[44]  Kaustav Banerjee,et al.  Electrical contacts to two-dimensional semiconductors. , 2015, Nature materials.

[45]  Fengnian Xia,et al.  Recent Advances in Two-Dimensional Materials beyond Graphene. , 2015, ACS nano.

[46]  L. Xie,et al.  Two-dimensional transition metal dichalcogenide alloys: preparation, characterization and applications. , 2015, Nanoscale.

[47]  Robert Vajtai,et al.  Tellurium-Assisted Low-Temperature Synthesis of MoS2 and WS2 Monolayers. , 2015, ACS nano.

[48]  Oriol López Sánchez,et al.  Large-area MoS2 grown using H2S as the sulphur source , 2015 .

[49]  Lain‐Jong Li,et al.  Emerging energy applications of two-dimensional layered transition metal dichalcogenides , 2015 .

[50]  Zhenxing Wang,et al.  Designing the shape evolution of SnSe2 nanosheets and their optoelectronic properties. , 2015, Nanoscale.

[51]  Huikai Zhong,et al.  Interface designed MoS2/GaAs heterostructure solar cell with sandwich stacked hexagonal boron nitride , 2015, Scientific Reports.

[52]  Lianmao Peng,et al.  Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils , 2015, Nature Communications.

[53]  Hua Zhang Ultrathin Two-Dimensional Nanomaterials. , 2015, ACS nano.

[54]  Hua Zhang,et al.  Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. , 2015, Journal of the American Chemical Society.

[55]  Xi Wan,et al.  Electronic Properties of MoS2-WS2 Heterostructures Synthesized with Two-Step Lateral Epitaxial Strategy. , 2015, ACS nano.

[56]  A. Liao,et al.  Large-Area Synthesis of High-Quality Uniform Few-Layer MoTe2. , 2015, Journal of the American Chemical Society.

[57]  Hywel Morgan,et al.  Recent developments in 2D layered inorganic nanomaterials for sensing. , 2015, Nanoscale.

[58]  Jr-hau He,et al.  Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface , 2015, Science.

[59]  Zhongfan Liu,et al.  Chemical vapor deposition of monolayer WS2 nanosheets on Au foils toward direct application in hydrogen evolution , 2015, Nano Research.

[60]  Wei Huang,et al.  Non‐volatile Resistive Memory Devices Based on Solution‐Processed Ultrathin Two‐Dimensional Nanomaterials , 2015 .

[61]  Hua Zhang,et al.  Synthesis and structure of two-dimensional transition-metal dichalcogenides , 2015 .

[62]  Kazi Ahmed,et al.  Two step growth phenomena of molybdenum disulfide-tungsten disulfide heterostructures. , 2015, Chemical communications.

[63]  Yeliang Wang,et al.  Monolayer PtSe₂, a New Semiconducting Transition-Metal-Dichalcogenide, Epitaxially Grown by Direct Selenization of Pt. , 2015, Nano letters.

[64]  Chongwu Zhou,et al.  Chemical Vapor Deposition Growth of Monolayer WSe2 with Tunable Device Characteristics and Growth Mechanism Study. , 2015, ACS nano.

[65]  Pinshane Y. Huang,et al.  High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity , 2015, Nature.

[66]  Lain-Jong Li,et al.  Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. , 2015, Chemical Society reviews.

[67]  Yu Zhang,et al.  Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline. , 2015, Chemical Society reviews.

[68]  M. S. Jeong,et al.  Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils. , 2015, ACS nano.

[69]  Zhongfan Liu,et al.  Substrate Facet Effect on the Growth of Monolayer MoS2 on Au Foils. , 2015, ACS nano.

[70]  Wei Zhou,et al.  Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors , 2015, Nature Communications.

[71]  Qing Hua Wang,et al.  Layer number dependence of MoS2 photoconductivity using photocurrent spectral atomic force microscopic imaging. , 2015, ACS nano.

[72]  Jingbo Li,et al.  Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. , 2015, Nano letters.

[73]  Moon J. Kim,et al.  Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. , 2015, ACS nano.

[74]  Zhongfan Liu,et al.  Monolayer MoS2 Growth on Au Foils and On‐Site Domain Boundary Imaging , 2015 .

[75]  D. Chi,et al.  Growth of wafer-scale MoS2 monolayer by magnetron sputtering. , 2015, Nanoscale.

[76]  Yun Hee Jang,et al.  Layer-controlled CVD growth of large-area two-dimensional MoS2 films. , 2015, Nanoscale.

[77]  Jung Ho Yu,et al.  Vertical heterostructure of two-dimensional MoS₂ and WSe₂ with vertically aligned layers. , 2015, Nano letters.

[78]  Kuan-Hua Huang,et al.  Synthesis of lateral heterostructures of semiconducting atomic layers. , 2015, Nano letters.

[79]  P. Ye,et al.  Semiconducting black phosphorus: synthesis, transport properties and electronic applications. , 2014, Chemical Society reviews.

[80]  Oriol López Sánchez,et al.  Large-Area Epitaxial Monolayer MoS2 , 2015, ACS nano.

[81]  L. Fu,et al.  Direct growth of molybdenum disulfide on arbitrary insulating surfaces by chemical vapor deposition , 2015 .

[82]  Takeshi Fujita,et al.  Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. , 2015, Nature chemistry.

[83]  Large-areaMoS 2 grown using H 2 S as the sulphur source , 2015 .

[84]  Junwei Liu,et al.  Quantum spin Hall effect in two-dimensional transition metal dichalcogenides , 2014, Science.

[85]  Yu Huang,et al.  Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. , 2014, Nature nanotechnology.

[86]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[87]  Harish Bhaskaran,et al.  Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition , 2014 .

[88]  Claudia Ruppert,et al.  Optical properties and band gap of single- and few-layer MoTe2 crystals. , 2014, Nano letters.

[89]  A. Jang,et al.  Stacking of Two-Dimensional Materials in Lateral and Vertical Directions , 2014 .

[90]  Lain-Jong Li,et al.  Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. , 2014, ACS nano.

[91]  F. Schwierz,et al.  Two-dimensional materials for electronic applications , 2014 .

[92]  Baoming Wang,et al.  Continuous Ultra-Thin MoS2 Films Grown by Low-Temperature Physical Vapor Deposition , 2014 .

[93]  Xiaodong Xu,et al.  Lateral heterojunctions within monolayer semiconductors , 2014, 1406.3122.

[94]  L. Fu,et al.  Quantum Spin Hall Effect and Topological Field Effect Transistor in Two-Dimensional Transition Metal Dichalcogenides , 2014, 1406.2749.

[95]  Yiming Zhu,et al.  Growth of Large‐Area 2D MoS2(1‐x)Se2x Semiconductor Alloys , 2014, Advanced materials.

[96]  Yanrong Li,et al.  Two-dimensional semiconductors with possible high room temperature mobility , 2014, Nano Research.

[97]  C. Rao,et al.  Graphene Analogues of Inorganic Layered Materials , 2014 .

[98]  Lain-Jong Li,et al.  Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. , 2014, ACS nano.

[99]  Il-Kwon Oh,et al.  Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor. , 2014, Nanoscale.

[100]  P. Ajayan,et al.  Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. , 2014, Nano letters.

[101]  Jing Kong,et al.  Role of the seeding promoter in MoS2 growth by chemical vapor deposition. , 2014, Nano letters.

[102]  Lain‐Jong Li,et al.  Large-area synthesis of highly crystalline WSe(2) monolayers and device applications. , 2014, ACS nano.

[103]  Misun Hong,et al.  Patternable large-scale molybdenium disulfide atomic layers grown by gold-assisted chemical vapor deposition. , 2014, Angewandte Chemie.

[104]  Yu-Lun Chueh,et al.  Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures , 2014, Scientific Reports.

[105]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[106]  Jan-Kai Chang,et al.  Monolayer MoSe 2 Grown by Chemical VaporDeposition for Fast Photodetection , 2014 .

[107]  S. Koester,et al.  SnSe2 field-effect transistors with high drive current , 2013 .

[108]  J. Myoung,et al.  Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. , 2013, ACS nano.

[109]  Yu Zhang,et al.  Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. , 2013, ACS nano.

[110]  Yu Zhang,et al.  Epitaxial monolayer MoS2 on mica with novel photoluminescence. , 2013, Nano letters.

[111]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[112]  H. Ago,et al.  Large-scale synthesis of NbS2 nanosheets with controlled orientation on graphene by ambient pressure CVD. , 2013, Nanoscale.

[113]  Lain-Jong Li,et al.  Large-Area Aiming Synthesis of WSe2 Monolayers , 2013, 1304.7365.

[114]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[115]  Liying Jiao,et al.  Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. , 2013, Journal of the American Chemical Society.

[116]  Xiaodong Xu,et al.  Vapor-solid growth of high optical quality MoS₂ monolayers with near-unity valley polarization. , 2013, ACS nano.

[117]  Desheng Kong,et al.  Synthesis of MoS2 and MoSe2 films with vertically aligned layers. , 2013, Nano letters.

[118]  Jun Lou,et al.  Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. , 2013, Nature materials.

[119]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature materials.

[120]  Jian Zhou,et al.  Band offsets and heterostructures of two-dimensional semiconductors , 2013 .

[121]  Ruitao Lv,et al.  Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. , 2012, Nano letters.

[122]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[123]  Jing Kong,et al.  van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.

[124]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[125]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[126]  Yu‐Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[127]  Kinam Kim,et al.  A role for graphene in silicon-based semiconductor devices , 2011, Nature.

[128]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[129]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[130]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[131]  K. Kim,et al.  From the future Si technology perspective: Challenges and opportunities , 2010, 2010 International Electron Devices Meeting.

[132]  John R. Miller,et al.  Graphene Double-Layer Capacitor with ac Line-Filtering Performance , 2010, Science.

[133]  Jing Kong,et al.  Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. , 2010, Nano letters.

[134]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2010, Nature nanotechnology.

[135]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[136]  A. Reina,et al.  Work function engineering of graphene electrode via chemical doping. , 2010, ACS nano.

[137]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.

[138]  L. Forró,et al.  Pressure induced superconductivity in pristine 1T-TiSe2. , 2009, Physical review letters.

[139]  L. Forró,et al.  Pressure induced superconductivity in pristine 1T-TiSe2. , 2009, Physical review letters.

[140]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[141]  Y. Sung,et al.  Controlled growth of high-quality TiO2 nanowires on sapphire and silica , 2006 .

[142]  R. Cava,et al.  Superconductivity in CuxTiSe2 , 2006, cond-mat/0606529.

[143]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[144]  M. Remškar,et al.  Charge density waves in some Nb and Ta chalcogenides , 1995 .

[145]  K. Takita,et al.  Charge density wave transition and superconductivity in 2H-NbSe2. Direct measurement of the penetration depth in a layered superconductor , 1985 .

[146]  F. Disalvo,et al.  Neutron scattering study of the charge-density wave transitions in 2 H − Ta Se 2 and 2 H − Nb Se 2 , 1977 .