Forming a large disc galaxy from a z < 1 major merger

Using high-resolution SPH simulations in a fully cosmological Λ cold dark matter context, we study the formation of a bright disc-dominated galaxy that originates from a 'wet' major merger at z = 0.8 . The progenitors of the disc galaxy are themselves disc galaxies that formed from early major mergers between galaxies with blue colours. A substantial thin stellar disc grows rapidly following the last major merger and the present-day properties of the final remnant are typical of early-type spiral galaxies, with an i-band bulge-to-disc ratio ~0.65, a disc scalelength of 7.2 kpc, g−r = 0.5 mag , an HI linewidth (W_(20)/2) of 238 km s^(−1) and total magnitude i = −22.4. The key ingredients for the formation of a dominant stellar disc component after a major merger are (i) substantial and rapid accretion of gas through cold flows followed at late times by cooling of gas from the hot phase, (ii) supernova feedback that is able to partially suppress star formation during mergers and (iii) relative fading of the spheroidal component. The gas fraction of the progenitors' discs does not exceed 25 per cent at z < 3 , emphasizing that the continuous supply of gas from the local environment plays a major role in the regrowth of discs and in keeping the galaxies blue. The results of this simulation alleviate the problem posed for the existence of disc galaxies by the high likelihood of interactions and mergers for galaxy-sized haloes at relatively low z.

[1]  H. Rix,et al.  HISTORY OF GALAXY INTERACTIONS AND THEIR IMPACT ON STAR FORMATION OVER THE LAST 7 Gyr FROM GEMS , 2009, 0903.3700.

[2]  J. Wadsley,et al.  THE ROLE OF COLD FLOWS IN THE ASSEMBLY OF GALAXY DISKS , 2008, 0812.0007.

[3]  A. West,et al.  Correlations among the properties of galaxies found in a blind H I survey, which also have SDSS optical data , 2008, 0809.1434.

[4]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[5]  Andreas Burkert,et al.  BULGE n AND B/T IN HIGH-MASS GALAXIES: CONSTRAINTS ON THE ORIGIN OF BULGES IN HIERARCHICAL MODELS , 2008, 0807.0040.

[6]  K. Nagamine,et al.  Effects of metal enrichment and metal cooling in galaxy growth and cosmic star formation history , 2008, 0806.3460.

[7]  Lars Hernquist,et al.  HOW DO DISKS SURVIVE MERGERS? , 2008, 0806.1739.

[8]  J. Bullock,et al.  THE DESTRUCTION OF THIN STELLAR DISKS VIA COSMOLOGICALLY COMMON SATELLITE ACCRETION EVENTS , 2008, 0810.2785.

[9]  P. Hopkins,et al.  A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei , 2008, 0808.1227.

[10]  B. Robertson,et al.  High-Redshift Galaxy Kinematics: Constraints on Models of Disk Formation , 2008, 0808.1100.

[11]  S. Rabien,et al.  From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey , 2008, 0807.1184.

[12]  A. Graham,et al.  Inclination- and dust-corrected galaxy parameters: bulge-to-disc ratios and size–luminosity relations , 2008, 0805.3565.

[13]  Joel R. Primack,et al.  Galaxy merger morphologies and time-scales from simulations of equal-mass gas-rich disc mergers , 2008, 0805.1246.

[14]  G. Stinson,et al.  Damped Lyman α systems in galaxy formation simulations , 2008, 0804.4474.

[15]  S. White,et al.  Effects of supernova feedback on the formation of galaxy discs , 2008, 0804.3795.

[16]  UCOLick,et al.  The Redshift Evolution of Wet, Dry, and Mixed Galaxy Mergers from Close Galaxy Pairs in the DEEP2 Galaxy Redshift Survey , 2008, 0802.3004.

[17]  F. Governato,et al.  The formation of disk galaxies in computer simulations , 2008, 0801.3845.

[18]  Kyle R. Stewart,et al.  Merger Histories of Galaxy Halos and Implications for Disk Survival , 2007, 0711.5027.

[19]  J. Wadsley,et al.  Stellar Feedback in Dwarf Galaxy Formation , 2007, Science.

[20]  C. Frenk,et al.  Bulges versus discs: the evolution of angular momentum in cosmological simulations of galaxy formation , 2007, 0710.2901.

[21]  L. Moustakas,et al.  Cold Dark Matter Substructure and Galactic Disks. I. Morphological Signatures of Hierarchical Satellite Accretion , 2007, 0708.1949.

[22]  I. Pérez,et al.  FORMATION AND EVOLUTION OF GALAXY DISKS , 2008 .

[23]  A. Cimatti,et al.  NICMOS measurements of the near-infrared background , 2007, 0712.2880.

[24]  A. Dekel,et al.  Predicting the properties of the remnants of dissipative galaxy mergers , 2007, 0710.4584.

[25]  C. Conselice,et al.  Strong size evolution of the most massive galaxies since z~2 , 2007, 0709.0621.

[26]  S. White,et al.  Galaxy growth in the concordance ΛCDM cosmology , 2007, 0708.1814.

[27]  U. California,et al.  Dust attenuation in hydrodynamic simulations of spiral galaxies , 2007, astro-ph/0702513.

[28]  H. Rix,et al.  The Dependence of Star Formation on Galaxy Stellar Mass , 2007, astro-ph/0702208.

[29]  S. Driver,et al.  The Millennium Galaxy Catalogue: The Luminosity Functions of Bulges and Disks and Their Implied Stellar Mass Densities , 2007, astro-ph/0701728.

[30]  Durham,et al.  Luminosity and stellar mass functions of discs and spheroids in the SDSS and the supermassive black hole mass function , 2006, astro-ph/0612719.

[31]  Marijn Franx,et al.  The Rest-Frame Optical Luminosity Functions of Galaxies at 2≤z≤3.5 , 2006, astro-ph/0610484.

[32]  G. Stinson,et al.  The Origin and Evolution of the Mass-Metallicity Relationship for Galaxies: Results from Cosmological N-Body Simulations , 2006, astro-ph/0609620.

[33]  M. Bureau,et al.  The SAURON project – VIII. OASIS/CFHT integral-field spectroscopy of elliptical and lenticular galaxy centres , 2006, astro-ph/0609452.

[34]  M. Blanton,et al.  The Baryon Content of Extremely Low Mass Dwarf Galaxies , 2006, astro-ph/0608295.

[35]  P. Hopkins,et al.  The Kinematic Structure of Merger Remnants , 2006, astro-ph/0607446.

[36]  P. Hopkins,et al.  Feedback-driven Evolution of the Far-Infrared Spectral Energy Distributions of Luminous and Ultraluminous Infrared Galaxies , 2006, astro-ph/0605652.

[37]  P. Jonsson sunrise: polychromatic dust radiative transfer in arbitrary geometries , 2006, astro-ph/0604118.

[38]  C. Steidel,et al.  The Mass-Metallicity Relation at z≳2 , 2006, astro-ph/0602473.

[39]  Fabio Governato,et al.  Forming disc galaxies in ΛCDM simulations , 2006 .

[40]  G. Stinson,et al.  Star formation and feedback in smoothed particle hydrodynamic simulations – I. Isolated galaxies , 2006, astro-ph/0602350.

[41]  R. Davé,et al.  Galaxy Merger Statistics and Inferred Bulge-to-Disk Ratios in Cosmological SPH Simulations , 2005, astro-ph/0509474.

[42]  P. Yoachim,et al.  Structural Parameters of Thin and Thick Disks in Edge-on Disk Galaxies , 2005, astro-ph/0508460.

[43]  Carnegie-Mellon,et al.  A Merger-driven Scenario for Cosmological Disk Galaxy Formation , 2005, astro-ph/0503369.

[44]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[45]  R. Nichol,et al.  The Fourth Data Release of the Sloan Digital Sky Survey , 2005 .

[46]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[47]  R. Ellis,et al.  Evolution of the Near-Infrared Tully-Fisher Relation: Constraints on the Relationship between the Stellar and Total Masses of Disk Galaxies since z ~ 1 , 2005, astro-ph/0503597.

[48]  V. Springel,et al.  Dwarf galaxies in voids: suppressing star formation with photoheating , 2005, astro-ph/0501304.

[49]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[50]  Barry Rothberg,et al.  A Deep K-Band Photometric Survey of Merger Remnants , 2004 .

[51]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[52]  B. Gibson,et al.  The Emergence of the Thick Disk in a Cold Dark Matter Universe , 2004, astro-ph/0405306.

[53]  M. Carollo,et al.  Bulges or Bars from Secular Evolution? , 2004, astro-ph/0402484.

[54]  Supercomputing,et al.  Stellar halo constraints on simulated late-type galaxies , 2003, astro-ph/0312023.

[55]  Gasoline: a flexible, parallel implementation of TreeSPH , 2003, astro-ph/0303521.

[56]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[57]  L. Ho,et al.  Detailed Structural Decomposition of Galaxy Images , 2002, astro-ph/0204182.

[58]  M. Steinmetz,et al.  The hierarchical origin of galaxy morphologies , 2002, astro-ph/0202466.

[59]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[60]  J. Silk The formation of galaxy discs , 2000, astro-ph/0010624.

[61]  S. White,et al.  The formation of galactic discs , 1997, astro-ph/9707093.

[62]  D. Spergel,et al.  The Formation of Disk Galaxies , 1996, astro-ph/9611226.

[63]  L. Hernquist,et al.  Transformations of Galaxies. II. Gasdynamics in Merging Disk Galaxies: Addendum , 1996 .

[64]  C. Baugh,et al.  Evolution of the Hubble sequence in hierarchical models for galaxy formation , 1996, astro-ph/9602085.

[65]  P. Madau,et al.  Radiative Transfer in a Clumpy Universe. II. The Ultraviolet Extragalactic Background , 1995, astro-ph/9509093.

[66]  Simon D. M. White,et al.  Hierarchical galaxy formation : overmerging and the formation of an X-ray cluster , 1993 .

[67]  J. Binney,et al.  Galactic accretion and angular momentum re-orientation , 1992 .

[68]  Jeremiah P. Ostriker,et al.  Galactic disks, infall, and the global value of Omega , 1992 .

[69]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[70]  G. Efstathiou,et al.  Cold dark matter, the structure of galactic haloes and the origin of the Hubble sequence , 1985, Nature.

[71]  E. Athanassoula Internal Kinematics and Dynamics of Galaxies , 1983 .

[72]  S. M. Fall Galaxy Formation: Some Comparisons Between Theory and Observation , 1983 .

[73]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .