Globally rotation invariant multi-scale co-occurrence local binary pattern

This paper proposes a globally rotation invariant multi-scale co-occurrence local binary pattern (MCLBP) feature for texture-relevant tasks. In MCLBP, we arrange all co-occurrence patterns into groups according to properties of the co-patterns, and design three encoding functions (Sum, Moment, and Fourier Pooling) to extract features from each group. The MCLBP can effectively capture the correlation information between different scales and is also globally rotation invariant (GRI). The MCLBP is substantially different from most existing LBP variants including the LBP, the CLBP, and the MSJ-LBP that achieves rotation invariance by locally rotation invariant (LRI) encoding. We fully evaluate the properties of the MCLBP and compare it with some powerful features on five challenging databases. Extensive experiments demonstrate the effectiveness of the MCLBP compared to the state-of-the-art LBP variants including the CLBP and the LBPHF. Meanwhile, the dimension and computational cost of the MCLBP is also lower than that of the CLBP_S/M/C and LBPHF_S_M. This paper proposes a globally rotation invariant multi-scale co-occurrence of LBPs (MCLBP).The proposed MCLBP can effectively capture the correlation between the LBPs in different scales.Three globally rotation invariant encoding methods are introduced for MCLBP.The proposed MCLBP performs very well on texture, material, and medical cell classification.

[1]  Matti Pietikäinen,et al.  Face Recognition with Local Binary Patterns , 2004, ECCV.

[2]  Shu Liao,et al.  Dominant Local Binary Patterns for Texture Classification , 2009, IEEE Transactions on Image Processing.

[3]  Matti Pietikäinen,et al.  Texture Classification using a Linear Configuration Model based Descriptor , 2011, BMVC.

[4]  Matti Pietikäinen,et al.  Recognising spontaneous facial micro-expressions , 2011, 2011 International Conference on Computer Vision.

[5]  Matti Pietikäinen,et al.  Rotation-Invariant Image and Video Description With Local Binary Pattern Features , 2012, IEEE Transactions on Image Processing.

[6]  Xiaofeng Ren,et al.  Toward Robust Material Recognition for Everyday Objects , 2011, BMVC.

[7]  Hongbin Zha,et al.  Sorted Random Projections for robust texture classification , 2011, 2011 International Conference on Computer Vision.

[8]  Edward H. Adelson,et al.  Recognizing Materials Using Perceptually Inspired Features , 2013, International Journal of Computer Vision.

[9]  M. Pietikäinen,et al.  TEXTURE ANALYSIS WITH LOCAL BINARY PATTERNS , 2004 .

[10]  Andrew Zisserman,et al.  Texture classification: are filter banks necessary? , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[11]  Mario Fritz,et al.  Recognizing Materials from Virtual Examples , 2012, ECCV.

[12]  Xiaoyang Tan,et al.  Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions , 2007, IEEE Transactions on Image Processing.

[13]  Paul W. Fieguth,et al.  Extended local binary patterns for texture classification , 2012, Image Vis. Comput..

[14]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[15]  Matti Pietikäinen,et al.  Combining LBP Difference and Feature Correlation for Texture Description , 2014, IEEE Transactions on Image Processing.

[16]  James M. Rehg,et al.  CENTRIST: A Visual Descriptor for Scene Categorization , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Kazuhiro Fukui,et al.  Feature Extraction Based on Co-occurrence of Adjacent Local Binary Patterns , 2011, PSIVT.

[18]  Edward H. Adelson,et al.  Exploring features in a Bayesian framework for material recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  Yo-Sung Ho,et al.  Advances in Image and Video Technology , 2011, Lecture Notes in Computer Science.

[20]  Zhenhua Guo,et al.  Rotation invariant texture classification using LBP variance (LBPV) with global matching , 2010, Pattern Recognit..

[21]  Ammad Ali,et al.  Face Recognition with Local Binary Patterns , 2012 .

[22]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[23]  Andrew Zisserman,et al.  A Statistical Approach to Texture Classification from Single Images , 2004, International Journal of Computer Vision.

[24]  Jianxin Wu,et al.  mCENTRIST: A Multi-Channel Feature Generation Mechanism for Scene Categorization , 2014, IEEE Transactions on Image Processing.

[25]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[26]  Matti Pietikäinen,et al.  Computer Vision Using Local Binary Patterns , 2011, Computational Imaging and Vision.

[27]  Matti Pietikäinen,et al.  Outex - new framework for empirical evaluation of texture analysis algorithms , 2002, Object recognition supported by user interaction for service robots.

[28]  Matti Pietikäinen,et al.  Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features , 2009, SCIA.

[29]  Matti Pietikäinen,et al.  Local Binary Patterns for Still Images , 2011 .

[30]  Jun Guo,et al.  Multi-scale Joint Encoding of Local Binary Patterns for Texture and Material Classification , 2013, BMVC.

[31]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[32]  L. Nanni,et al.  Selecting the Best Performing Rotation Invariant Patterns in Local Binary/Ternary Patterns , 2010, IPCV.

[33]  Zhenhua Guo,et al.  A Completed Modeling of Local Binary Pattern Operator for Texture Classification , 2010, IEEE Transactions on Image Processing.

[34]  Matti Pietikäinen,et al.  Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Charles F. Hockett,et al.  A mathematical theory of communication , 1948, MOCO.

[36]  Wen Gao,et al.  Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[37]  Andrew Zisserman,et al.  A Statistical Approach to Material Classification Using Image Patch Exemplars , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Loris Nanni,et al.  Local binary patterns variants as texture descriptors for medical image analysis , 2010, Artif. Intell. Medicine.

[39]  Matti Pietikäinen,et al.  Discriminative features for texture description , 2012, Pattern Recognit..

[40]  Robert F. Murphy,et al.  A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells , 2001, Bioinform..

[41]  Rong Xiao,et al.  Pairwise Rotation Invariant Co-Occurrence Local Binary Pattern , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[44]  Matti Pietikäinen,et al.  Multi-scale Binary Patterns for Texture Analysis , 2003, SCIA.

[45]  Rong Xiao,et al.  Pairwise Rotation Invariant Co-Occurrence Local Binary Pattern , 2014, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..