Investigation of a miniature differential ion thruster
暂无分享,去创建一个
[1] Mariano Andrenucci,et al. FEEP Thruster Survivability in the LEO Atomic Oxygen Environment , 2001 .
[2] Ethirajan Rathakrishnan,et al. Applied Gas Dynamics , 2010 .
[3] A. Ellingboe,et al. Analysis of uncompensated Langmuir probe characteristics in radio-frequency discharges revisited , 2006 .
[4] D. Kirmse,et al. Performance mapping of new gN-RITs at Giessen , 2022 .
[5] I. Katz,et al. Fundamentals of Electric Propulsion: Ion and Hall Thrusters , 2008 .
[6] G. Noci,et al. New ion source design for ion propulsion application , 1998 .
[7] A. V. Phelps,et al. MOMENTUM TRANSFER CROSS SECTIONS FOR SLOW ELECTRONS IN HE, AR, KR, AND XE FROM TRANSPORT COEFFICIENTS, , 1964 .
[8] Juan Jose Salazar Gonzalez,et al. Electric Propulsion for ESA Science and Earth Observation Missions , 1997 .
[9] C. Birdsall,et al. Plasma Physics via Computer Simulation , 2018 .
[10] M. Tuszewski,et al. The accuracy of Langmuir probe ion density measurements in low-frequency RF discharges , 1996 .
[11] Francis F. Chen,et al. Langmuir Probe Diagnostics , 2003 .
[12] Jeffrey Reichbach,et al. MICROPROPULSION SYSTEM SELECTION FOR PRECISION FORMATION FLYING SATELLITES , 2001 .
[13] A. Fridman,et al. Plasma Physics and Engineering , 2021 .
[14] Didier Barret,et al. Studying the evolution of the hot universe with the X-ray evolving universe spectroscopy mission – XEUS , 2004 .
[15] Michele Coletti,et al. A micro PPT for Cubesat application: Design and preliminary experimental results , 2011 .
[16] Francis F. Chen,et al. Langmuir probes in RF plasma: surprising validity of OML theory , 2009 .
[17] Andrew D. Ketsdever,et al. Thruster Options for Microspacecraft: A Review and Evaluation of State-of-the-Art and Emerging Technologies , 2000 .
[18] Rainer Killinger,et al. ARTEMIS orbit raising inflight experience with ion propulsion , 2003 .
[19] Mark Campbell,et al. A micro pulsed plasma thruster (PPT) for the "Dawgstar" spacecraft , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).
[20] M. Argüeso,et al. Measurement of high frequency currents with a Rogowski coil , 2005 .
[21] Michael A. Lieberman,et al. Magnetic induction and plasma impedance in a cylindrical inductive discharge , 1997 .
[22] V. Godyak. Plasma phenomena in inductive discharges , 2003 .
[23] M. Hayashi. Determination of electron-xenon total excitation cross-sections, from threshold to 100 eV, from experimental values of Townsend's α , 1983 .
[24] Eui-Hyeok Yang,et al. JPL micro-thrust propulsion activities , 2002 .
[25] G. Ganapathi,et al. The Ion Propulsion System For Dawn , 2003 .
[26] I. Langmuir,et al. THE THEORY OF COLLECTORS IN GASEOUS DISCHARGES , 1926 .
[27] C. Chung,et al. Review of heating mechanism in inductively coupled plasma , 2000 .
[28] Michael J. Patterson,et al. NEXT: NASA's Evolutionary Xenon Thruster , 2002 .
[29] K. Riemann,et al. The influence of collisions on the plasma sheath transition , 1997 .
[30] Jen-Shih Chang,et al. The theory of the instantaneous triple-probe method for direct-display of plasma parameters in low-density collisionless plasmas , 1977 .
[31] R. Carman,et al. Electron energy distribution functions for modelling the plasma kinetics in dielectric barrier discharges , 2000 .
[32] Hyunchul Kim,et al. Particle and fluid simulations of low-temperature plasma discharges: benchmarks and kinetic effects , 2005 .
[33] W. Steckelmacher. Molecular gas dynamics and the direct simulation of gas flows , 1996 .
[34] M. Klick,et al. Plasma Diagnostics in rf Discharges Using Nonlinear and Resonance Effects , 1997 .
[35] H. Leiter,et al. Development Steps of the RF-Ion Thrusters RIT , 2001 .
[36] A. Lichtenberg,et al. Principles of Plasma Discharges and Materials Processing , 1994 .
[37] Uwe R. Kortshagen,et al. On the E - H mode transition in RF inductive discharges , 1996 .
[38] W. F. Ray,et al. Wide Bandwidth Rogowski Current Transducers , 1993 .
[39] Michael Meng-Tsuan Tsay. Numerical modelling of a radio-frequency micro ion thruster , 2006 .
[40] Horst W. Loeb,et al. ?NRIT-2.5 - a new optimized microthruster of Giessen University , 2009 .
[41] I. Hutchinson. Principles of Plasma Diagnostics , 1987 .
[42] J. Carlsson,et al. Feasibility Study of a Low Power Helicon Thruster , 2008 .
[43] Lisa Kaltenegger,et al. The Darwin mission: Search for extra-solar planets , 2005 .
[44] C. Su,et al. Continuum Theory of Spherical Electrostatic Probes , 1963 .
[45] Richard E. Wirz,et al. Discharge plasma processes of ring-cusp ion thrusters , 2005 .
[46] R. Jahn,et al. Physics of Electric Propulsion , 1968 .
[47] H. W. Loeb,et al. Improved rf-coupling methods for RIT-engines , 1979 .
[48] Michael Meng-Tsuan Tsay. Two-dimensional numerical modeling of Radio-Frequency ion engine discharge , 2010 .
[49] H. Furth,et al. Plasma diagnostic techniques , 1965 .
[50] Benjamin Alexandrovich,et al. Measurement of electron energy distribution in low-pressure RF discharges , 1992 .
[51] A. W.. Propulsion Options for Primary Thrust and Attitude Control of Microspacecraft , .
[52] Sven G. Bilen,et al. Vacuum Testing of the Miniature Radio-Frequency Ion Thruster , 2005 .
[53] Herbert Shea,et al. Development of MEMS based Electric Propulsion , 2010 .
[54] D. Feili,et al. Forty Years of Giessen EP-Activities and the Recent RIT-Microthruster Development , 2005 .
[55] Sternberg,et al. Dynamic model of the electrode sheaths in symmetrically driven rf discharges. , 1990, Physical review. A, Atomic, molecular, and optical physics.
[56] M. Kilter,et al. Micropropulsion Technologies for the European High-Precision Formation Flying Interferometer DARWIN , 2004 .
[57] H. Seifert,et al. Rocket Propulsion Elements , 1963 .
[58] Michele Coletti,et al. Emitter depletion measurement and modeling in the T5&T6Kaufman-type ion thrusters , 2007 .
[59] James E. Polk,et al. Numerical simulations of ion thruster accelerator grid erosion , 2002 .
[60] H. Loeb,et al. Development of the radio frequency microthruster RIT 4 , 1972 .
[61] D. Fearn,et al. The Influence of Charge-Exchange Ions on the Beam Divergence of an Ion Thruster , 2001 .
[62] Francis F. Chen,et al. Langmuir probe analysis for high density plasmas , 2001 .
[63] D. E. Hastings,et al. Analysis of Thruster Requirements and Capabilities for Local Satellite Clusters , 1996 .
[64] Vlad Hruby,et al. Micro Newton Colloid Thruster System Development , 2001 .
[65] R. Fernsler,et al. Using rf impedance probe measurements to determine plasma potential and the electron energy distribution , 2010 .
[66] N. Jeremy Kasdin,et al. Plasma Propulsion Options for Multiple Terrestrial Planet Finder Architectures , 2002 .
[67] J. G. Laframboise,et al. Current collection by a cylindrical probe in a partly ionized, collisional plasma , 2006 .
[68] H. Ward,et al. LISA — The interferometer , 1997 .
[69] Andrew D. Ketsdever,et al. Micropropulsion for small spacecraft , 2000 .
[70] Francis F. Chen,et al. RF compensated probes for high-density discharges , 1994 .
[71] T. Koizumi,et al. Momentum transfer cross sections for low-energy electrons in krypton and xenon from characteristic energies , 1986 .
[72] W. Steiger,et al. Indium Field Emission Electric Propulsion Microthruster Experimental Characterization , 2004 .
[73] Sin‐Li Chen,et al. Instantaneous Direct‐Display System of Plasma Parameters by Means of Triple Probe , 1965 .
[74] N. C. Wallace,et al. BASIC ISSUES IN ELECTRIC PROPULSION TESTING AND THE NEED FOR INTERNATIONAL STANDARDS , 2003 .
[75] Z. Ding,et al. Effects of impedance matching network on the discharge mode transitions in a radio-frequency inductively coupled plasma , 2008 .
[76] G. Vasilescu,et al. Electronic Noise and Interfering Signals: Principles and Applications , 2005 .
[77] R. Merlino. Understanding Langmuir probe current-voltage characteristics , 2007 .
[78] Adam Pollok London. A systems study of propulsion technologies for orbit and attitude control of microspacecraft , 1996 .