Thin Front Limit of an Integro-differential Fisher-KPP Equation with Fat-Tailed Kernels
暂无分享,去创建一个
Florian Patout | Jimmy Garnier | Christopher Henderson | Emeric Bouin | J. Garnier | E. Bouin | Christopher Henderson | F. Patout
[1] G. Barles,et al. Dirac concentrations in Lotka-Volterra parabolic PDEs , 2007, 0708.3720.
[2] Jack Carr,et al. Uniqueness of travelling waves for nonlocal monostable equations , 2004 .
[3] Benjamin Jourdain,et al. Lévy flights in evolutionary ecology , 2012, Journal of mathematical biology.
[4] M. Alfaro. Slowing Allee effect versus accelerating heavy tails in monostable reaction diffusion equations , 2015, 1505.04626.
[5] J. Medlock,et al. Spreading disease: integro-differential equations old and new. , 2003, Mathematical biosciences.
[6] Lionel Roques,et al. Fast propagation for KPP equations with slowly decaying initial conditions , 2009, 0906.3164.
[7] Jérôme Coville. Contribution à l'étude d'équations non locales en dynamique des populations , 2015 .
[8] Hans F. Weinberger,et al. Long-Time Behavior of a Class of Biological Models , 1982 .
[9] K. Schumacher. Travelling-front solutions for integro-differential equations. I. , 1980 .
[10] George C. Hurtt,et al. Reid's Paradox of Rapid Plant Migration Dispersal theory and interpretation of paleoecological records , 1998 .
[11] Jimmy Garnier,et al. Accelerating Solutions in Integro-Differential Equations , 2010, SIAM J. Math. Anal..
[12] Paul C. Fife,et al. Mathematical Aspects of Reacting and Diffusing Systems , 1979 .
[13] G. Barles,et al. Wavefront propagation for reaction-diffusion systems of PDE , 1990 .
[14] S. M'el'eard,et al. Singular Limits for Reaction-Diffusion Equations with Fractional Laplacian and Local or Nonlocal Nonlinearity , 2014, 1405.4746.
[15] Mihály Kovács,et al. Fractional Reproduction-Dispersal Equations and Heavy Tail Dispersal Kernels , 2007, Bulletin of mathematical biology.
[16] M. Ledwidge,et al. Run for your life. , 1979, Geriatrics.
[17] M. Freidlin. Limit Theorems for Large Deviations and Reaction-Diffusion Equations , 1985 .
[18] G. Barles,et al. Comparison principle for dirichlet-type Hamilton-Jacobi equations and singular perturbations of degenerated elliptic equations , 1990 .
[19] G. Barles,et al. Concentration in Lotka-Volterra Parabolic or Integral Equations: A General Convergence Result , 2009, 0903.4952.
[20] Jérôme Coville,et al. Propagation speed of travelling fronts in non local reaction–diffusion equations , 2005 .
[21] J. Coville,et al. Propagation phenomena in monostable integro-differential equations: Acceleration or not? , 2016, 1610.05908.
[22] Odo Diekmann,et al. Run for your life; a note on the asymptotic speed of propagation of an epidemic : (preprint) , 1979 .
[23] D. Finkelshtein,et al. Accelerated nonlocal nonsymmetric dispersion for monostable equations on the real line , 2017, 1706.09647.
[24] D. Finkelshtein,et al. Accelerated front propagation for monostable equations with nonlocal diffusion: multidimensional case , 2016, Journal of Elliptic and Parabolic Equations.
[25] James S. Clark,et al. Why Trees Migrate So Fast: Confronting Theory with Dispersal Biology and the Paleorecord , 1998, The American Naturalist.
[26] R. Fisher. THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES , 1937 .
[27] G. Barles. Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .
[28] Christopher Henderson. Propagation of solutions to the Fisher-KPP equation with slowly decaying initial data , 2015, 1505.07921.
[29] D. Aronson,et al. Multidimensional nonlinear di u-sion arising in population genetics , 1978 .
[30] R M Nisbet,et al. The regulation of inhomogeneous populations. , 1975, Journal of theoretical biology.
[31] P. Souganidis,et al. A PDE approach to geometric optics for certain semilinear parabolic equations , 1989 .
[32] B. Perthame,et al. The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach. , 2005, Theoretical population biology.
[33] P. Souganidis,et al. Front propagation for a jump process model arising in spacial ecology , 2005 .