Thin Front Limit of an Integro-differential Fisher-KPP Equation with Fat-Tailed Kernels

We study the asymptotic behavior of solutions to a monostable integro-differential Fisher-KPP equation , that is where the standard Laplacian is replaced by a convolution term, when the dispersal kernel is fat-tailed. We focus on two different regimes. Firstly, we study the long time/long range scaling limit by introducing a relevant rescaling in space and time and prove a sharp bound on the (super-linear) spreading rate in the Hamilton-Jacobi sense by means of sub-and super-solutions. Secondly, we investigate a long time/small mutation regime for which, after identifying a relevant rescaling for the size of mutations, we derive a Hamilton-Jacobi limit.

[1]  G. Barles,et al.  Dirac concentrations in Lotka-Volterra parabolic PDEs , 2007, 0708.3720.

[2]  Jack Carr,et al.  Uniqueness of travelling waves for nonlocal monostable equations , 2004 .

[3]  Benjamin Jourdain,et al.  Lévy flights in evolutionary ecology , 2012, Journal of mathematical biology.

[4]  M. Alfaro Slowing Allee effect versus accelerating heavy tails in monostable reaction diffusion equations , 2015, 1505.04626.

[5]  J. Medlock,et al.  Spreading disease: integro-differential equations old and new. , 2003, Mathematical biosciences.

[6]  Lionel Roques,et al.  Fast propagation for KPP equations with slowly decaying initial conditions , 2009, 0906.3164.

[7]  Jérôme Coville Contribution à l'étude d'équations non locales en dynamique des populations , 2015 .

[8]  Hans F. Weinberger,et al.  Long-Time Behavior of a Class of Biological Models , 1982 .

[9]  K. Schumacher Travelling-front solutions for integro-differential equations. I. , 1980 .

[10]  George C. Hurtt,et al.  Reid's Paradox of Rapid Plant Migration Dispersal theory and interpretation of paleoecological records , 1998 .

[11]  Jimmy Garnier,et al.  Accelerating Solutions in Integro-Differential Equations , 2010, SIAM J. Math. Anal..

[12]  Paul C. Fife,et al.  Mathematical Aspects of Reacting and Diffusing Systems , 1979 .

[13]  G. Barles,et al.  Wavefront propagation for reaction-diffusion systems of PDE , 1990 .

[14]  S. M'el'eard,et al.  Singular Limits for Reaction-Diffusion Equations with Fractional Laplacian and Local or Nonlocal Nonlinearity , 2014, 1405.4746.

[15]  Mihály Kovács,et al.  Fractional Reproduction-Dispersal Equations and Heavy Tail Dispersal Kernels , 2007, Bulletin of mathematical biology.

[16]  M. Ledwidge,et al.  Run for your life. , 1979, Geriatrics.

[17]  M. Freidlin Limit Theorems for Large Deviations and Reaction-Diffusion Equations , 1985 .

[18]  G. Barles,et al.  Comparison principle for dirichlet-type Hamilton-Jacobi equations and singular perturbations of degenerated elliptic equations , 1990 .

[19]  G. Barles,et al.  Concentration in Lotka-Volterra Parabolic or Integral Equations: A General Convergence Result , 2009, 0903.4952.

[20]  Jérôme Coville,et al.  Propagation speed of travelling fronts in non local reaction–diffusion equations , 2005 .

[21]  J. Coville,et al.  Propagation phenomena in monostable integro-differential equations: Acceleration or not? , 2016, 1610.05908.

[22]  Odo Diekmann,et al.  Run for your life; a note on the asymptotic speed of propagation of an epidemic : (preprint) , 1979 .

[23]  D. Finkelshtein,et al.  Accelerated nonlocal nonsymmetric dispersion for monostable equations on the real line , 2017, 1706.09647.

[24]  D. Finkelshtein,et al.  Accelerated front propagation for monostable equations with nonlocal diffusion: multidimensional case , 2016, Journal of Elliptic and Parabolic Equations.

[25]  James S. Clark,et al.  Why Trees Migrate So Fast: Confronting Theory with Dispersal Biology and the Paleorecord , 1998, The American Naturalist.

[26]  R. Fisher THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES , 1937 .

[27]  G. Barles Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .

[28]  Christopher Henderson Propagation of solutions to the Fisher-KPP equation with slowly decaying initial data , 2015, 1505.07921.

[29]  D. Aronson,et al.  Multidimensional nonlinear di u-sion arising in population genetics , 1978 .

[30]  R M Nisbet,et al.  The regulation of inhomogeneous populations. , 1975, Journal of theoretical biology.

[31]  P. Souganidis,et al.  A PDE approach to geometric optics for certain semilinear parabolic equations , 1989 .

[32]  B. Perthame,et al.  The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach. , 2005, Theoretical population biology.

[33]  P. Souganidis,et al.  Front propagation for a jump process model arising in spacial ecology , 2005 .