Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors

In this manuscript, a dramatic increase in the energy density of ~ 69 Wh kg−1 and an extraordinary cycleability ~ 2000 cycles of the Li-ion hybrid electrochemical capacitors (Li-HEC) is achieved by employing tailored activated carbon (AC) of ~ 60% mesoporosity derived from coconut shells (CS). The AC is obtained by both physical and chemical hydrothermal carbonization activation process, and compared to the commercial AC powders (CAC) in terms of the supercapacitance performance in single electrode configuration vs. Li. The Li-HEC is fabricated with commercially available Li4Ti5O12 anode and the coconut shell derived AC as cathode in non-aqueous medium. The present research provides a new routine for the development of high energy density Li-HEC that employs a mesoporous carbonaceous electrode derived from bio-mass precursors.

[1]  Gleb Yushin,et al.  Nanostructured activated carbons from natural precursors for electrical double layer capacitors , 2012 .

[2]  Wako Naoi,et al.  New generation "nanohybrid supercapacitor". , 2013, Accounts of chemical research.

[3]  Yongyao Xia,et al.  A Hybrid Electrochemical Supercapacitor Based on a 5 V Li-Ion Battery Cathode and Active Carbon , 2005 .

[4]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[5]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[6]  B. Rambabu,et al.  Electrochemical performance of LiNi0.5Mn1.5O4 prepared by improved solid state method as cathode in hybrid supercapacitor , 2009 .

[7]  Dongqiang Zhu,et al.  Adsorption of pharmaceuticals to microporous activated carbon treated with potassium hydroxide, carbon dioxide, and steam. , 2011, Journal of environmental quality.

[8]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[9]  Paul Albertus,et al.  Batteries for electric and hybrid-electric vehicles. , 2010, Annual review of chemical and biomolecular engineering.

[10]  Dirk C. Keene Acknowledgements , 1975 .

[11]  B. Rambabu,et al.  Nanocrystalline LiCrTiO4 as anode for asymmetric hybrid supercapacitor , 2010 .

[12]  Stefan Kaskel,et al.  KOH activation of carbon-based materials for energy storage , 2012 .

[13]  Qiang Wang,et al.  A Hybrid Supercapacitor Fabricated with a Carbon Nanotube Cathode and a TiO2–B Nanowire Anode , 2006 .

[14]  V. Aravindan,et al.  High power lithium-ion hybrid electrochemical capacitors using spinel LiCrTiO4 as insertion electrode , 2012 .

[15]  R. Vasanthi,et al.  Olivine-type nanoparticle for hybrid supercapacitors , 2008 .

[16]  Yusaku Isobe,et al.  High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors , 2010 .

[17]  K. Naoi,et al.  ‘Nanohybrid Capacitor’: The Next Generation Electrochemical Capacitors , 2010 .

[18]  K. Vijayamohanan,et al.  Preparation and characterization of composite electrodes of coconut-shell-based activated carbon and hydrous ruthenium oxide for supercapacitors , 2005 .

[19]  G. Rao,et al.  Hybrid supercapacitor with nano-TiP2O7 as intercalation electrode , 2011 .

[20]  S. Ferrari,et al.  Author contributions , 2021 .

[21]  M. Yoshio,et al.  Electrochemical performance of carbon-coated lithium manganese silicate for asymmetric hybrid supercapacitors , 2010 .

[22]  Yongyao Xia,et al.  Nanosized Li4Ti5O12 Prepared by Molten Salt Method as an Electrode Material for Hybrid Electrochemical Supercapacitors , 2006 .

[23]  Wako Naoi,et al.  Second generation ‘nanohybrid supercapacitor’: Evolution of capacitive energy storage devices , 2012 .

[24]  Yun-Sung Lee,et al.  LiMnPO4 - A next generation cathode material for lithium-ion batteries , 2013 .

[25]  G. Rao,et al.  Carbon coated nano-LiTi2(PO4)3 electrodes for non-aqueous hybrid supercapacitors. , 2012, Physical chemistry chemical physics : PCCP.

[26]  F. Rodríguez-Reinoso,et al.  Preparation of activated carbon by chemical activation with ZnCl2 , 1991 .

[27]  Patrice Simon,et al.  New Materials and New Configurations for Advanced Electrochemical Capacitors , 2008 .

[28]  R. Ruoff,et al.  Activated graphene as a cathode material for Li-ion hybrid supercapacitors. , 2012, Physical chemistry chemical physics : PCCP.

[29]  Vanchiappan Aravindan,et al.  Constructing high energy density non-aqueous Li-ion capacitors using monoclinic TiO2-B nanorods as insertion host , 2013 .

[30]  Alexander Kvit,et al.  High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. , 2010, ACS nano.

[31]  Ki-Hwan Oh,et al.  A novel concept of hybrid capacitor based on manganese oxide materials , 2007 .

[32]  Antonio B. Fuertes,et al.  Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for High‐Performance Supercapacitor Electrodes , 2011 .

[33]  Yun-Sung Lee,et al.  A novel asymmetric hybrid supercapacitor based on Li2FeSiO4 and activated carbon electrodes , 2010 .

[34]  Li-Jun Wan,et al.  LiFePO4 Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy‐Storage Devices , 2009, Advanced materials.

[35]  Yongyao Xia,et al.  A hybrid nonaqueous electrochemical supercapacitor using nano-sized iron oxyhydroxide and activated carbon , 2006 .

[36]  K. Naoi,et al.  Li‐Ion‐Based Hybrid Supercapacitors in Organic Medium , 2013 .

[37]  G. Rao,et al.  Electrochemical performance of α-MnO2 nanorods/activated carbon hybrid supercapacitor , 2012 .

[38]  B. Chowdari,et al.  Fabrication of High Energy‐Density Hybrid Supercapacitors Using Electrospun V2O5 Nanofibers with a Self‐Supported Carbon Nanotube Network , 2012 .

[39]  Andrew J. Gmitter,et al.  The design of alternative nonaqueous high power chemistries , 2006 .

[40]  Tao Zheng,et al.  An Asymmetric Hybrid Nonaqueous Energy Storage Cell , 2001 .

[41]  S. Ogale,et al.  Nonaqueous lithium-ion capacitors with high energy densities using trigol-reduced graphene oxide nanosheets as cathode-active material. , 2013, ChemSusChem.