A serial extension of multiblock PLS

A novel multiblock PLS algorithm called S‐PLS (serial PLS) is presented. S‐PLS models the separate predictor blocks serially, making it a supplement to hierarchical PLS. In the S‐PLS algorithm the predictor blocks are connected only via the response Y. The block models are calculated using the Y residuals from the previous block model. This allows for an independent interpretation of the separate block models. In each block model the classical PLS algorithm is used. The principles of S‐PLS are demonstrated on two chemical applications. In the first example, which is non‐linear, S‐PLS makes it possible to separate the linear and non‐linear parts in the model. The second example illustrates how a model with two predictor blocks can be analysed with S‐PLS. Copyright © 1999 John Wiley & Sons, Ltd.

[1]  Veli-Matti Taavitsainen,et al.  Nonlinear data analysis with latent variables , 1992 .

[2]  R. Manne Analysis of two partial-least-squares algorithms for multivariate calibration , 1987 .

[3]  T. Næs,et al.  Locally Weighted Regression in Diffuse Near-Infrared Transmittance Spectroscopy , 1992 .

[4]  Manfred Morari,et al.  PLS/neural networks , 1992 .

[5]  S. Wold,et al.  Nonlinear PLS modeling , 1989 .

[6]  S. Wold,et al.  INLR, implicit non‐linear latent variable regression , 1997 .

[7]  Agnar Höskuldsson,et al.  The H-principle in modelling with applications to chemometrics , 1992 .

[8]  Thomas J. McAvoy,et al.  Nonlinear PLS Modeling Using Neural Networks , 1992 .

[9]  J. Westerhuis,et al.  Multivariate modelling of the pharmaceutical two‐step process of wet granulation and tableting with multiblock partial least squares , 1997 .

[10]  P. Garthwaite An Interpretation of Partial Least Squares , 1994 .

[11]  Torbjörn Lundstedt,et al.  A multivariate strategy for optimizing a two-step process , 1995 .

[12]  A. Höskuldsson PLS regression methods , 1988 .

[13]  Agnar Höskuldsson,et al.  Quadratic PLS regression , 1992 .

[14]  Lars Renberg,et al.  Non‐linear modelling with a coupled neural network — PLS regression system , 1996 .

[15]  S. Wold,et al.  Peptide quantitative structure-activity relationships, a multivariate approach. , 1987, Journal of medicinal chemistry.

[16]  S. Wold Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models , 1978 .

[17]  I. Helland ON THE STRUCTURE OF PARTIAL LEAST SQUARES REGRESSION , 1988 .

[18]  John F. MacGregor,et al.  Process monitoring and diagnosis by multiblock PLS methods , 1994 .

[19]  S. Wold Nonlinear partial least squares modelling II. Spline inner relation , 1992 .

[20]  I. E. Frank A nonlinear PLS model , 1990 .

[21]  Anders Berglund,et al.  Alignment of flexible molecules at their receptor site using 3D descriptors and Hi-PCA , 1997, J. Comput. Aided Mol. Des..

[22]  A. Phatak,et al.  The geometry of partial least squares , 1997 .

[23]  Svante Wold,et al.  Hierarchical multiblock PLS and PC models for easier model interpretation and as an alternative to variable selection , 1996 .

[24]  Alison J. Burnham,et al.  Frameworks for latent variable multivariate regression , 1996 .

[25]  Heikki Haario,et al.  Nonlinear data analysis. II. Examples on new link functions and optimization aspects , 1994 .

[26]  S. Wold,et al.  The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses , 1984 .

[27]  Hiroshi Yoshida,et al.  Optimization of the Inner Relation Function of QPLS Using Genetic Algorithm , 1997, J. Chem. Inf. Comput. Sci..

[28]  Svante Wold,et al.  Multivariate Parametrization of 55 Coded and Non‐Coded Amino Acids , 1989 .