A constraint selection technique for recursive set membership identification

Abstract Recursive approximation of the set of feasible parameters is a key problem in set membership identification. In this paper a new technique is presented, aimed at recursively computing an outer orthotopic approximation of polytopic feasible parameter sets. The main idea is to exploit the concept of binding constraints in linear programs, in order to select a limited number of constraints providing a good approximation of the exact feasible set. Numerical tests demonstrate that the proposed technique outperforms existing recursive approximation algorithms, with a limited increase of the required computational burden.

[1]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[2]  Luigi Chisci,et al.  Block recursive parallelotopic bounding in set membership identification , 1998, Autom..

[3]  Vicenç Puig,et al.  Identification for passive robust fault detection using zonotope‐based set‐membership approaches , 2011 .

[4]  Eduardo F. Camacho,et al.  Bounded error identification of systems with time-varying parameters , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[5]  D. Bertsekas,et al.  Recursive state estimation for a set-membership description of uncertainty , 1971 .

[6]  Fred C. Schweppe,et al.  Uncertain dynamic systems , 1973 .

[7]  J. R. Deller,et al.  Least-square identification with error bounds for real-time signal processing and control , 1993, Proc. IEEE.

[8]  Y. F. Huang,et al.  On the value of information in system identification - Bounded noise case , 1982, Autom..

[9]  A. Vicino,et al.  Sequential approximation of feasible parameter sets for identification with set membership uncertainty , 1996, IEEE Trans. Autom. Control..

[10]  A. Kurzhanski Identification - a theory of guaranteed estimates , 1989 .

[11]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[12]  Gustavo Belforte,et al.  Parameter estimation algorithms for a set-membership description of uncertainty , 1990, Autom..

[13]  Boris T. Polyak,et al.  Special issue on the set membership modelling of uncertainties in dynamical systems , 2005 .

[14]  Antonio Vicino,et al.  Estimation theory for nonlinear models and set membership uncertainty , 1991, Autom..

[15]  E. Walter,et al.  Estimation of parameter bounds from bounded-error data: a survey , 1990 .

[16]  E. K. Kostousova State estimation for dynamic systems via parallelotopes optimization and parallel computations , 1998 .