Immune adaptations that maintain homeostasis with the intestinal microbiota

[1]  Ties Boerma,et al.  Global and regional causes of death. , 2009, British medical bulletin.

[2]  Dan R. Littman,et al.  Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria , 2009, Cell.

[3]  Annaïg Lan,et al.  The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. , 2009, Immunity.

[4]  F. Powrie,et al.  Regulatory T cells reinforce intestinal homeostasis. , 2009, Immunity.

[5]  Bradley S. Turner,et al.  Helicobacter pylori moves through mucus by reducing mucin viscoelasticity , 2009, Proceedings of the National Academy of Sciences.

[6]  L. Hooper,et al.  Gut commensal bacteria direct a protective immune response against Toxoplasma gondii. , 2009, Cell host & microbe.

[7]  Thomas F. Tedder,et al.  Innate and Adaptive Immunity Cooperate Flexibly to Maintain Host-Microbiota Mutualism , 2009, Science.

[8]  R. D. Hatton,et al.  Developmental plasticity of Th17 and Treg cells. , 2009, Current opinion in immunology.

[9]  Michael D. George,et al.  Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. , 2009, Cell host & microbe.

[10]  L. Hooper,et al.  Reciprocal Interactions between Commensal Bacteria and γδ Intraepithelial Lymphocytes during Mucosal Injury1 , 2009, The Journal of Immunology.

[11]  C. Elson,et al.  Late developmental plasticity in the T helper 17 lineage. , 2009, Immunity.

[12]  C. Galambos Common variable immunodeficiency disorders: division into distinct clinical phenotypes , 2009 .

[13]  Andreas Diefenbach,et al.  RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22–producing NKp46+ cells , 2009, Nature Immunology.

[14]  L. Eckmann,et al.  Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface , 2008, Proceedings of the National Academy of Sciences.

[15]  J. Gordon,et al.  Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. , 2008, Cell host & microbe.

[16]  Sarah L. Brown,et al.  A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells , 2008, Nature.

[17]  J. Berzofsky,et al.  Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. , 2008, Immunity.

[18]  R Balfour Sartor,et al.  Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. , 2008, Cell host & microbe.

[19]  R. Knight,et al.  Worlds within worlds: evolution of the vertebrate gut microbiota , 2008, Nature Reviews Microbiology.

[20]  A. Velcich,et al.  The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria , 2008, Proceedings of the National Academy of Sciences.

[21]  Doktorgrades Der Naturwissenschaften,et al.  Autophagy in Thymic Epithelium Shapes the T cell Repertoire and is Essential for Tolerance , 2009 .

[22]  B. Kelsall Recent progress in understanding the phenotype and function of intestinal dendritic cells and macrophages , 2008, Mucosal Immunology.

[23]  H. Tilg,et al.  XBP1 Links ER Stress to Intestinal Inflammation and Confers Genetic Risk for Human Inflammatory Bowel Disease , 2008, Cell.

[24]  Lennart Hammarstrom,et al.  Common variable immunodeficiency disorders: division into distinct clinical phenotypes. , 2008, Blood.

[25]  S. Mazmanian,et al.  A microbial symbiosis factor prevents intestinal inflammatory disease , 2008, Nature.

[26]  S. Sa,et al.  Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens , 2008, Nature Medicine.

[27]  M. Hornef,et al.  Secreted enteric antimicrobial activity localises to the mucus surface layer , 2008, Gut.

[28]  P. Guerry Campylobacter flagella: not just for motility. , 2007, Trends in microbiology.

[29]  G. Plitas,et al.  MyD88-mediated signals induce the bactericidal lectin RegIIIγ and protect mice against intestinal Listeria monocytogenes infection , 2007, The Journal of experimental medicine.

[30]  J. Casanova,et al.  Primary Immunodeficiencies: A Field in Its Infancy , 2007, Science.

[31]  A. Plebani,et al.  Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. , 2007, Immunity.

[32]  Y. Wan,et al.  T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. , 2007, Immunity.

[33]  M. Prevost,et al.  A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system , 2007, Proceedings of the National Academy of Sciences.

[34]  S. Mazmanian,et al.  The love–hate relationship between bacterial polysaccharides and the host immune system , 2006, Nature Reviews Immunology.

[35]  A. Sher,et al.  IL-23 plays a key role in Helicobacter hepaticus–induced T cell–dependent colitis , 2006, The Journal of experimental medicine.

[36]  F. Powrie,et al.  Interleukin-23 drives innate and T cell–mediated intestinal inflammation , 2006, The Journal of experimental medicine.

[37]  J. Meijerink,et al.  Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. , 2006, Gastroenterology.

[38]  C. Elson,et al.  Tight mucosal compartmentation of the murine immune response to antigens of the enteric microbiota. , 2006, Gastroenterology.

[39]  K. Murphy,et al.  Th17: an effector CD4 T cell lineage with regulatory T cell ties. , 2006, Immunity.

[40]  A. Fischer,et al.  Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee Meeting in Budapest, 2005. , 2006, The Journal of allergy and clinical immunology.

[41]  M. Weichenthal,et al.  Reduced Paneth cell α-defensins in ileal Crohn's disease , 2005 .

[42]  S. Mazmanian,et al.  An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System , 2005, Cell.

[43]  H. Lochs,et al.  Spatial Organization and Composition of the Mucosal Flora in Patients with Inflammatory Bowel Disease , 2005, Journal of Clinical Microbiology.

[44]  E. Purdom,et al.  Diversity of the Human Intestinal Microbial Flora , 2005, Science.

[45]  K. McCoy,et al.  Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria , 2005, Immunology.

[46]  B. Stecher,et al.  Comparison of Salmonellaenterica Serovar Typhimurium Colitis in Germfree Mice and Mice Pretreated with Streptomycin , 2005, Infection and Immunity.

[47]  Benjamin P. Westover,et al.  Glycan Foraging in Vivo by an Intestine-Adapted Bacterial Symbiont , 2005, Science.

[48]  Richard A. Flavell,et al.  Nod2-Dependent Regulation of Innate and Adaptive Immunity in the Intestinal Tract , 2005, Science.

[49]  Hidde L Ploegh,et al.  CX3CR1-Mediated Dendritic Cell Access to the Intestinal Lumen and Bacterial Clearance , 2005, Science.

[50]  Jason M Doherty,et al.  Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  J. Orenstein,et al.  Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. , 2005, The Journal of clinical investigation.

[52]  Shizuo Akira,et al.  Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron , 2004, Nature.

[53]  P. Sansonetti War and peace at mucosal surfaces , 2004, Nature Reviews Immunology.

[54]  M. Hattori,et al.  Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Ruslan Medzhitov,et al.  Recognition of Commensal Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis , 2004, Cell.

[56]  A. Macpherson,et al.  Interactions between commensal intestinal bacteria and the immune system , 2004, Nature Reviews Immunology.

[57]  A. Macpherson,et al.  Induction of Protective IgA by Intestinal Dendritic Cells Carrying Commensal Bacteria , 2004, Science.

[58]  Keiichiro Suzuki,et al.  Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Judy H. Cho,et al.  Expression of NOD2 in Paneth cells: a possible link to Crohn’s ileitis , 2003, Gut.

[60]  M. Neurath,et al.  Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. , 2003, The Journal of clinical investigation.

[61]  J. Gordon,et al.  Honor thy symbionts , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  F. Powrie,et al.  Colitogenic Th1 Cells Are Present in the Antigen-Experienced T Cell Pool in Normal Mice: Control by CD4+ Regulatory T Cells and IL-101 , 2003, The Journal of Immunology.

[63]  Lynn K. Carmichael,et al.  A Genomic View of the Human-Bacteroides thetaiotaomicron Symbiosis , 2003, Science.

[64]  Jeffrey I. Gordon,et al.  Angiogenins: a new class of microbicidal proteins involved in innate immunity , 2003, Nature Immunology.

[65]  S. Foster,et al.  Host Recognition of Bacterial Muramyl Dipeptide Mediated through NOD2 , 2003, The Journal of Biological Chemistry.

[66]  Nigel J. Saunders,et al.  CD4+CD25+ TR Cells Suppress Innate Immune Pathology Through Cytokine-dependent Mechanisms , 2003, The Journal of experimental medicine.

[67]  Tasuku Honjo,et al.  Intestinal IgA synthesis: regulation of front-line body defences , 2003, Nature Reviews Immunology.

[68]  C. Elson,et al.  Bacterial-Reactive T Regulatory Cells Inhibit Pathogenic Immune Responses to the Enteric Flora1 , 2002, The Journal of Immunology.

[69]  Jeffrey I. Gordon,et al.  Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Manfred P. Dierich,et al.  Phagocytosis and Killing of Bacteria by Professional Phagocytes and Dendritic Cells , 2002, Clinical and Vaccine Immunology.

[71]  E. Fuchs,et al.  Protection of the intestinal mucosa by intraepithelial γδ T cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[72]  A. Sher,et al.  Bacteria-triggered CD4+ T Regulatory Cells Suppress Helicobacter hepaticus–induced Colitis , 2002, The Journal of experimental medicine.

[73]  M. Julius,et al.  A Unique Subset of Self-specific Intraintestinal T Cells Maintains Gut Integrity , 2002, The Journal of experimental medicine.

[74]  H. Inoko,et al.  A basolateral sorting motif in the MICA cytoplasmic tail , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[75]  S. Szabo,et al.  The Transcription Factor T-bet Regulates Mucosal T Cell Activation in Experimental Colitis and Crohn's Disease , 2002, The Journal of experimental medicine.

[76]  P. Sansonetti,et al.  Phagocytosis of bacterial pathogens: implications in the host response. , 2001, Seminars in immunology.

[77]  Mourad Sahbatou,et al.  Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease , 2001, Nature.

[78]  Judy H. Cho,et al.  A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease , 2001, Nature.

[79]  P. Ricciardi-Castagnoli,et al.  Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria , 2001, Nature Immunology.

[80]  J. Gordon,et al.  Molecular analysis of commensal host-microbial relationships in the intestine. , 2001, Science.

[81]  W. Witte,et al.  Enterococci. Habitats, infections, virulence factors, resistances to antibiotics, transfer of resistance determinants. , 2001, Contributions to microbiology.

[82]  S. Normark,et al.  Germ-free and Colonized Mice Generate the Same Products from Enteric Prodefensins* , 2000, The Journal of Biological Chemistry.

[83]  R. Zinkernagel,et al.  A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. , 2000, Science.

[84]  Fiona Powrie,et al.  An Essential Role for Interleukin 10 in the Function of Regulatory T Cells That Inhibit Intestinal Inflammation , 1999, The Journal of experimental medicine.

[85]  M. Dinauer,et al.  Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. , 1999, Immunity.

[86]  Samuel I. Miller,et al.  Lipid A Acylation and Bacterial Resistance against Vertebrate Antimicrobial Peptides , 1998, Cell.

[87]  S. Bauer,et al.  Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. , 1998, Science.

[88]  J. Gordon,et al.  Examining the Role of Paneth Cells in the Small Intestine by Lineage Ablation in Transgenic Mice* , 1997, The Journal of Biological Chemistry.

[89]  R. Berg,et al.  Adoptive transfer of T lymphocytes to T-cell-depleted mice inhibits Escherichia coli translocation from the gastrointestinal tract , 1995, Infection and immunity.

[90]  K. E. Shroff,et al.  Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut , 1995, Infection and immunity.

[91]  W. Havran,et al.  Modulation of epithelial cell growth by intraepithelial gamma delta T cells. , 1994, Science.

[92]  R. Coffman,et al.  Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. , 1994, Immunity.

[93]  K. Rajewsky,et al.  Interleukin-10-deficient mice develop chronic enterocolitis , 1993, Cell.

[94]  G. Proetzel,et al.  Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease , 1992, Nature.

[95]  B. Malissen,et al.  Two gut intraepithelial CD8+ lymphocyte populations with different T cell receptors: a role for the gut epithelium in T cell differentiation , 1991, The Journal of experimental medicine.

[96]  S. Lee,et al.  Quantitative analysis of total macrophage content in adult mouse tissues. Immunochemical studies with monoclonal antibody F4/80 , 1985, The Journal of experimental medicine.

[97]  A. Husband,et al.  The origin and antigen-dependent distribution of IgA-containing cells in the intestine , 1978, The Journal of experimental medicine.

[98]  N. Pierce,et al.  Cellular kinetics of the intestinal immune response to cholera toxoid in rats , 1975, The Journal of experimental medicine.

[99]  J. Salomon,et al.  Serum and secretory IgA in axenic and holoxenic mice. , 1971, Journal of immunology.

[100]  E. J. Knight,et al.  The route of re-circulation of lymphocytes in the rat , 1964, Proceedings of the Royal Society of London. Series B. Biological Sciences.