A reliable algorithm for solving tenth-order boundary value problems

In this paper we present an efficient numerical algorithm for solving linear and nonlinear boundary value problems with two-point boundary conditions of tenth-order. The differential transform method is applied to construct the numerical solutions. The proposed algorithm avoids the complexity provided by other numerical approaches. Several illustrative examples are given to demonstrate the effectiveness of the present algorithm.

[1]  R. A. Wentzell,et al.  Hydrodynamic and Hydromagnetic Stability. By S. CHANDRASEKHAR. Clarendon Press: Oxford University Press, 1961. 652 pp. £5. 5s. , 1962, Journal of Fluid Mechanics.

[2]  Andrew G. Glen,et al.  APPL , 2001 .

[3]  Riaz A. Usmani On the numerical integration of a boundary value problem involving a fourth order linear differential equation , 1977 .

[4]  I. H. Abdel-Halim Hassan,et al.  On solving some eigenvalue problems by using a differential transformation , 2002, Appl. Math. Comput..

[5]  M. M. Chawla,et al.  Finite difference methods for two-point boundary value problems involving high order differential equations , 1979 .

[6]  Yves Cherruault,et al.  Adomian's polynomials for nonlinear operators , 1996 .

[7]  Abdul-Majid Wazwaz,et al.  A reliable modification of Adomian decomposition method , 1999, Appl. Math. Comput..

[8]  Y. Cherruault,et al.  New ideas for proving convergence of decomposition methods , 1995 .

[9]  Y. C. Liu,et al.  Solution of Two-Point Boundary-Value Problems Using the Differential Transformation Method , 1998 .

[10]  To Fu Ma,et al.  Iterative solutions for a beam equation with nonlinear boundary conditions of third order , 2004, Appl. Math. Comput..

[11]  Shaher Momani,et al.  Comparing numerical methods for solving fourth-order boundary value problems , 2007, Appl. Math. Comput..

[12]  A. Wazwaz The Modified Adomian Decomposition Method for Solving Linear and Nonlinear Boundary Value Problems of Tenth-order and Twelfth-order , 2000 .

[13]  Abdul-Majid Wazwaz,et al.  The Numerical Solution of Special Fourth-Order Boundary Value Problems by the Modified Decomposition Method , 2000, Neural Parallel Sci. Comput..

[14]  Eusebius J. Doedel,et al.  FINITE DIFFERENCE COLLOCATION METHODS FOR NONLINEAR TWO POINT BOUNDARY VALUE PROBLEMS , 1979 .

[15]  Cha'o-Kuang Chen,et al.  Application of differential transformation to eigenvalue problems , 1996 .

[16]  A. Rèpaci,et al.  Nonlinear dynamical systems: On the accuracy of adomian's decomposition method , 1990 .

[17]  Y. Cherruault Convergence of Adomian's method , 1989 .

[18]  I. H. Abdel-Halim Hassan,et al.  Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems , 2008 .

[19]  Ming-Jyi Jang,et al.  On solving the initial-value problems using the differential transformation method , 2000, Appl. Math. Comput..

[20]  Y. Cherruault,et al.  Decomposition methods: A new proof of convergence , 1993 .

[21]  G. Adomian A review of the decomposition method in applied mathematics , 1988 .

[22]  Shahid S. Siddiqi,et al.  Solutions of tenth-order boundary value problems using eleventh degree spline , 2007, Appl. Math. Comput..

[23]  A. Maccari Chaos, solitons and fractals in hidden symmetry models , 2006 .

[24]  Edward H. Twizell,et al.  Spline solutions of linear tenth-order boundary-value problems , 1998, Int. J. Comput. Math..

[25]  Ming-Jyi Jang,et al.  Two-dimensional differential transform for partial differential equations , 2001, Appl. Math. Comput..

[26]  Edward H. Twizell,et al.  Spline solutions of linear twelfth-order boundary-value problems , 1997 .

[27]  Ming-Jyi Jang,et al.  Analysis of the response of a strongly nonlinear damped system using a differential transformation technique , 1997 .

[28]  R. A. Usmani An O(h6) Finite Difference Analogue for the Solution of Some Differential Equations Occurring in Plate Deflection Theory , 1977 .

[29]  Edward H. Twizell,et al.  Numerical methods for eighth-, tenth- and twelfth-order eigenvalue problems arising in thermal instability , 1994, Adv. Comput. Math..

[30]  Edward H. Twizell,et al.  Spline solutions of linear sixth-order boundary-value problems , 1996, Int. J. Comput. Math..

[31]  Y. Cherruault,et al.  Convergence of Adomian's method applied to differential equations , 1994 .