PHOTOMETRIC REDSHIFT PROBABILITY DISTRIBUTIONS FOR GALAXIES IN THE SDSS DR8

We present redshift probability distributions for galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 8 imaging data. We used the nearest-neighbor weighting algorithm to derive the ensemble redshift distribution N(z), and individual redshift probability distributions P(z) for galaxies with r < 21.8 and u < 29.0. As part of this technique, we calculated weights for a set of training galaxies with known redshifts such that their density distribution in five-dimensional color-magnitude space was proportional to that of the photometry-only sample, producing a nearly fair sample in that space. We estimated the ensemble N(z) of the photometric sample by constructing a weighted histogram of the training-set redshifts. We derived P(z)'s for individual objects by using training-set objects from the local color-magnitude space around each photometric object. Using the P(z) for each galaxy can reduce the statistical error in measurements that depend on the redshifts of individual galaxies. The spectroscopic training sample is substantially larger than that used for the DR7 release. The newly added PRIMUS catalog is now the most important training set used in this analysis by a wide margin. We expect the primary sources of error in the N(z) reconstruction to be sample variance and spectroscopic failures: The training sets are drawn from relatively small volumes of space, and some samples have large incompleteness. Using simulations we estimated the uncertainty in N(z) due to sample variance at a given redshift to be ~10%-15%. The uncertainty on calculations incorporating N(z) or P(z) depends on how they are used; we discuss the case of weak lensing measurements. The P(z) catalog is publicly available from the SDSS Web site.

[1]  R. Lupton,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[2]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[3]  S. J. Lilly,et al.  The Canada-France Redshift Survey. I. Introduction to the Survey, Photometric Catalogs, and Surface Brightness Selection Effects , 1995 .

[4]  S. Maddox,et al.  zCOSMOS: A Large VLT/VIMOS Redshift Survey Covering 0 < z < 3 in the COSMOS Field , 2006, astro-ph/0612291.

[5]  M. Crocce,et al.  Clustering of photometric luminous red galaxies – I. Growth of structure and baryon acoustic feature , 2011, 1104.5236.

[6]  R. J. Brunner,et al.  The 2dF-SDSS LRG and QSO (2SLAQ) luminous red galaxy survey , 2006, astro-ph/0607631.

[7]  Jiangang Hao,et al.  ArborZ: PHOTOMETRIC REDSHIFTS USING BOOSTED DECISION TREES , 2009, The Astrophysical Journal.

[8]  D. C. Koo,et al.  Optical multicolors - A poor person's z machine for galaxies , 1985 .

[9]  Walter A. Siegmund,et al.  The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.

[10]  D. Wittman,et al.  WHAT LIES BENEATH: USING p(z) TO REDUCE SYSTEMATIC PHOTOMETRIC REDSHIFT ERRORS , 2009, 0905.0892.

[11]  L. Moscardini,et al.  Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North , 1999, astro-ph/9902290.

[12]  J. Newman,et al.  The Team Keck Treasury Redshift Survey of the GOODS-North Field , 2004, astro-ph/0401353.

[13]  M. Crocce,et al.  Clustering of photometric luminous red galaxies – II. Cosmological implications from the baryon acoustic scale , 2011, 1104.5426.

[14]  Huan Lin,et al.  Estimating the redshift distribution of photometric galaxy samples , 2008 .

[15]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[16]  A. Connolly,et al.  The Galaxy-Mass Correlation Function Measured from Weak Lensing in the Sloan Digital Sky Survey , 2003, astro-ph/0312036.

[17]  Max Tegmark,et al.  NYU-VAGC: a galaxy catalog based on new public surveys , 2004 .

[18]  G. Zamorani,et al.  The Zurich Extragalactic Bayesian Redshift Analyzer and its first application: COSMOS , 2006 .

[19]  M. Blanton,et al.  THE PRISM MULTI-OBJECT SURVEY (PRIMUS). I. SURVEY OVERVIEW AND CHARACTERISTICS , 2010, 1011.4307.

[20]  J. Brinkmann,et al.  New York University Value-Added Galaxy Catalog: A Galaxy Catalog Based on New Public Surveys , 2005 .

[21]  G. Mcvittie Problems of extra-galactic research , 1962 .

[22]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[23]  S. Schmidt,et al.  CHARACTERIZING AND PROPAGATING MODELING UNCERTAINTIES IN PHOTOMETRICALLY DERIVED REDSHIFT DISTRIBUTIONS , 2010, 1011.2239.

[24]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[25]  Huan Lin,et al.  Estimating the redshift distribution of photometric galaxy samples – II. Applications and tests of a new method , 2008, 0801.3822.

[26]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[27]  A. Szalay,et al.  Slicing Through Multicolor Space: Galaxy Redshifts from Broadband Photometry , 1995, astro-ph/9508100.

[28]  P. Hall,et al.  The CNOC2 Field Galaxy Redshift Survey. I. The Survey and the Catalog for the Patch CNOC 0223+00 , 2000, astro-ph/0004026.

[29]  S. Roweis,et al.  An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data , 2007, astro-ph/0703454.

[30]  SLAC,et al.  Sample variance in photometric redshift calibration: cosmological biases and survey requirements , 2011, 1109.5691.

[31]  S. J. Lilly,et al.  Precision photometric redshift calibration for galaxy–galaxy weak lensing , 2007, 0709.1692.

[32]  Alexander S. Szalay,et al.  Sloan digital sky survey: Early data release , 2002 .

[33]  Frazer N. Owen,et al.  Near-infrared photometry of distant radio galaxies - Spectral flux distributions and redshift estimates , 1982 .

[34]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[35]  B. Yanny,et al.  The Sloan Digital Sky Survey monitor telescope pipeline , 2006 .

[36]  Detection of Cosmic Magnification with the Sloan Digital Sky Survey , 2005, astro-ph/0504510.

[37]  A. Mazure,et al.  The Vimos VLT deep survey Global properties of 20 000 galaxies in the IAB < 22.5 WIDE survey , 2008, 0804.4568.

[38]  Granada,et al.  Galaxies in the Hubble Ultra Deep Field. I. Detection, Multiband Photometry, Photometric Redshifts, and Morphology , 2006, astro-ph/0605262.

[39]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[40]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[41]  Michael R. Blanton,et al.  Systematic errors in weak lensing: application to SDSS galaxy-galaxy weak lensing , 2005 .

[42]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[43]  Aniruddha R. Thakar,et al.  ERRATUM: “THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III” (2011, ApJS, 193, 29) , 2011 .

[44]  THE DEEP GROTH STRIP GALAXY REDSHIFT SURVEY. III. REDSHIFT CATALOG AND PROPERTIES OF GALAXIES , 2004, astro-ph/0411128.

[45]  E. Spillar,et al.  Photometric Redshifts of Galaxies , 1986 .

[46]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[47]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[48]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .