Universality of electron accumulation at wurtzite c- and a-plane and zinc-blende InN surfaces

Electron accumulation is found to occur at the surface of wurtzite (112¯0), (0001), and (0001¯) and zinc-blende (001) InN using x-ray photoemission spectroscopy. The accumulation is shown to be a universal feature of InN surfaces. This is due to the low Г-point conduction band minimum lying significantly below the charge neutrality level.

[1]  Lester F. Eastman,et al.  Surface charge accumulation of InN films grown by molecular-beam epitaxy , 2003 .

[2]  W. Mönch Semiconductor Surfaces and Interfaces , 1994 .

[3]  P. H. Jefferson,et al.  Quantized electron accumulation states in indium nitride studied by angle-resolved photoemission spectroscopy. , 2006, Physical review letters.

[4]  W. Schaff,et al.  Inversion and accumulation layers at InN surfaces , 2006 .

[5]  D. Tsui Observation of Surface Bound State and Two-Dimensional Energy Band by Electron Tunneling , 1970 .

[6]  M. Gutowski,et al.  Experimental determination of valence band maxima for SrTiO3, TiO2, and SrO and the associated valence band offsets with Si(001) , 2004 .

[7]  S. Tong,et al.  Evidence for a Type-II band alignment between cubic and hexagonal phases of GaN , 2003 .

[8]  W. Schaff,et al.  Intrinsic electron accumulation at clean InN surfaces. , 2004, Physical review letters.

[9]  Chris G. Van de Walle,et al.  Microscopic origins of surface states on nitride surfaces , 2007 .

[10]  B. R. Nag,et al.  On the band gap of indium nitride , 2003 .

[11]  W. Schaff,et al.  Clean wurtzite InN surfaces prepared with atomic hydrogen , 2005 .

[12]  P. H. Jefferson,et al.  Variation of band bending at the surface of Mg-doped InGaN: Evidence of p -type conductivity across the composition range , 2007 .

[13]  G. Paasch,et al.  A Modified Local Density Approximation. Electron Density in Inversion Layers , 1982 .

[14]  Nakayama,et al.  Chemical trend of band offsets at wurtzite/zinc-blende heterocrystalline semiconductor interfaces. , 1994, Physical review. B, Condensed matter.

[15]  Friedhelm Bechstedt,et al.  Origin of electron accumulation at wurtzite InN surfaces , 2004 .

[16]  B. Nag,et al.  Electron transport in compound semiconductors , 1980 .

[17]  P. Schley,et al.  Molecular beam epitaxy of phase pure cubic InN , 2006 .

[18]  Chris G. Van de Walle,et al.  ENERGETICS AND ELECTRONIC STRUCTURE OF STACKING FAULTS IN ALN, GAN, AND INN , 1998 .

[19]  Noguchi,et al.  Intrinsic electron accumulation layers on reconstructed clean InAs(100) surfaces. , 1991, Physical review letters.

[20]  A. Suzuki,et al.  MBE‐growth, characterization and properties of InN and InGaN , 2003 .

[21]  O. Ambacher,et al.  Growth of a-plane InN on r-plane sapphire with a GaN buffer by molecular-beam epitaxy , 2003 .

[22]  P. H. Jefferson,et al.  In adlayers on c-plane InN surfaces: A polarity-dependent study by x-ray photoemission spectroscopy , 2007 .